
1 Crowder-induced forces

The goal here is to consider a process in which two objects bind together, and how the
presence of “crowders” changes the free energy of binding. The example we will be using
will be a transcription factor binding to a site on DNA. We model the transcription factor
as a sphere of radius rt and the DNA as a cylinder of radius rd. As for the crowders, they
are spheres of radius rc, and they are mobile.

In the beginning, we will consider only the consequences of hard-core (excluded volume)
interactions. Later, we will add the effects of other potentials acting between different
molecular species.

2 Definition of ∆Fcrowd(φ)

In a dilute solution, the process of interest looks like Fig. 2. With this process is associated
some free energy change ∆Fdilute. Considering what goes on when a transcription factor
binds to a particular site on DNA, it is clear that calculating ∆Fdilute would be a very
complicated business; we would need a very detailed understanding of this process in
atomistic detail. We are not going to be calculating ∆Fdilute. Rather, our goal is to
understand how the total binding free energy changes when crowding is added. In general,
we quantify the concentration of crowders in terms of their volume fraction φ:

φ ≡ NcrowdVcrowd

Vbox
, (1)

where we are considering our system to be enclosed in a box of volume Vbox and containing
Ncrowd crowders. Our binding process is shown in Fig. 3, but now with crowders. The
free energy of binding will differ from that in the dilute case. We define the crowding
contribution to the binding free energy as this difference:

∆Fcrowd(φ) ≡ ∆F (φ)−∆Fdilute (2)

Note that so far we have made no assumptions or approximations, merely defined what
it is that we wish to calculate, namely ∆Fcrowd(φ).

2.1 Key assumption

2.2 Calculation of ∆Fcrowd to first order in φ

Clearly ∆Fcrowd(φ) vanishes as φ goes to zero. What we want now is the behavior of
∆Fcrowd to linear order in φ. That is, how does the binding free energy change as we add
an infinitesimal volume fraction of crowders?
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Figure 1: Schematic depiction of DNA, transcription factor (TF), and crowders.
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Figure 2: The initial and final states of the binding process. In the initial state, you should
think of the two objects as being very far apart.
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Figure 3: The binding process in a crowded environment. Definition of ∆Fcrowd(φ). By φ
we mean the volume fraction of crowders.

Of course, if we keep the box size Vbox fixed, it makes no sense to talk about infinitesimal
volume fractions of crowders, since there is no such thing as a fraction of a crowder. Instead,
we let the box size go to infinity, and we calculate the contribution to the binding free energy
when there is a a single crowder, in which case

φ =
1 · Vcrowd

Vbox
(3)

becomes infinitesimal as Vbox → ∞. This reformulation of the question is convenient,
because the problem turns out to be tractable for a single crowder. The binding process
is depicted in Fig. 4 for the case where there is a single crowder. The figure shows the
region of excluded volume for the DNA and the TF (or for the DNA-TF complex) in gray.
These are the regions where it is impossible to put the center of mass of a crowder. The
excluded volume region of the TF alone is a sphere of radius rt + rc centered on the TF.
The excluded volume region of the DNA is a cylinder of radius rd+rc. Very importantly, in
the bound state there is an overlap between these two region, so that the overall excluded
volume decreases during binding.

Now we can calculate free energies. What we will really be doing is calculating the
partition functions of the crowder itself. Let’s start with the partition function for the
initial state. We can place the crowder anywhere except in the excluded volume regions
around the TF and the DNA. Therefore

Zinitial =

∫
box

exp [−βU(~r)] d3~r = Vbox − V excl
DNA − V excl

TF (4)
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Figure 4: The binding process, with only one crowder. Excluded volume regions are shown
in gray.

For the final state, the total excluded volume is not the sum of the excluded volumes of
the DNA and the TF, since this would double-count the overlap region. Rather,

Zfinal =

∫
box

exp [−βU(~r)] d3~r = Vbox − (V excl
DNA + V excl

TF − V excl
overlap)

= Vbox − V excl
DNA − V excl

TF + V excl
overlap (5)

The free energy difference between initial and final states is

∆Fcrowd = −kBT lnZfinal + kBT lnZinitial (6)

It is convenient to work with the minus the free energy difference:

−β∆Fcrowd = ln

(
Zfinal

Zinitial

)
= ln

(
Vbox − V excl

DNA − V excl
TF + V excl

overlap

Vbox − V excl
DNA − V excl

TF

)
(7)
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We will divide through by Vbox since we are letting this quantity become very large.

−β∆Fcrowd = ln

(
1− V excl

DNA/Vbox − V excl
TF /Vbox + V excl

overlap/Vbox

1− V excl
DNA/Vbox − V excl

TF /Vbox

)
= ln

(
1− V excl

DNA/Vbox − V excl
TF /Vbox + V excl

overlap/Vbox

)
− ln

(
1− V excl

DNA/Vbox − V excl
TF /Vbox

)
(8)

The ratios of volumes are all very small as Vbox →∞, so we are justified in Taylor expanding

−β∆Fcrowd ≈ −V excl
DNA/Vbox − V excl

TF /Vbox + V excl
overlap/Vbox

+V excl
DNA/Vbox + V excl

TF /Vbox

= V excl
overlap/Vbox (9)

Remembering that for our one-crowder system, φ = Vcrowd/Vbox, we can rewrite this as

−β∆Fcrowd =
V excl

overlap

Vcrowd
· φ+O(φ2) (10)

2.3 Numerical values

Now we can use numerical values: rc = 3 nm, rt = 4 nm and rd = 1 nm. Then Vcrowd =
36π nm3 = 113.1 nm3. The volume of the overlap between the excluded volume regions,
V excl

overlap, is not easy to calculate analytically (the volume of the intersection of a cylinder

with an off-center sphere). We can do it numerically, however, with the result that V excl
overlap =

363.1 nm3. With these numerical values, Eq. 10 gives the estimate

−β∆Fcrowd(φ) ≈ 3.2φ (11)

Figure 5 compares this approximation with Monte Carlo simulation results, and shows that
the approximation is actually quite good.

2.4 Adding crowder-TF attractive potential

The good news is that the “single crowder” problem is still tractable when there is an
attractive potential between the TF and the crowder. It is a little bit more complicated,
and we will need some notation to talk about the various regions and their intersections
and so on. We denote the “difference” of two regions V1 and V2 by V1 \ V2. That is the set
of points within V1 but not within V2. The intersection of two regions is denoted V1 ∩ V2

and their union V1 ∪ V2. We will commit the abuse of notation of using the same symbol
(for example, Vbox) for both a region and the volume of that region. In the following it
may help to consult Fig. 4 often.
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Figure 5: Solid line: linear approximation for −β∆Fcrowd(φ) using numerical values. Sym-
bols: MC simulation results.

Suppose, then, that there is an attractive potential U(r) between the TF and the
crowders, where r is the distance between their centers of mass. We assume that for large
r the potential decays reasonably fast. The partition function for the initial state is

Zinitial = (Vbox − V excl
DNA − V excl

TF ) +

∫
Vbox\V excl

TF

[exp(−βU(r))− 1] d3~r (12)

In the integral, the origin is taken to be the center of the TF. This equation needs some
explanation. The first three terms (in parentheses) are the result in the absence of any
potential. However, to ignore the potential is a mistake, which we correct by adding the
integral of [exp(−βU(r))− exp(0)] over the region where the potential exists – that is, the
region outside the excluded volume region of the TF. If you are careful, you will note that
we are assuming that the potential U(r) surrounding the TF vanishes in the vicinity of the
DNA, since they are taken to be very far apart.

The partition function for the final state is

Zfinal = (Vbox − V excl
DNA − V excl

TF + V excl
overlap)

+

∫
Vbox\(V excl

DNA∪V excl
TF )

[exp(−βU(r))− 1] d3~r (13)

Again, the first line (in parentheses) is the answer without and potential and the second
term corrects it by integrating [exp(−βU(r))− exp(0)] over the region where the potential
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exists: again, outside of the excluded volume region of the TF, but this time also outside
the excluded volume region of the DNA.

Now we use the same tricks as before. Pulling out a factor of Vbox,

lnZinitial = ln(Vbox)

+ ln

(
1− V excl

DNA/Vbox − V excl
TF /Vbox +

1

Vbox

∫
Vbox\V excl

TF

[exp(−βU(r))− 1] d3~r

)

≈ ln(Vbox)− V excl
DNA/Vbox − V excl

TF /Vbox +
1

Vbox

∫
Vbox\V excl

TF

[exp(−βU(r))− 1] d3~r

and similarly

lnZfinal = ln(Vbox)

+ ln

(
1− V excl

DNA/Vbox − V excl
TF /Vbox + V excl

overlap/Vbox +
1

Vbox

∫
Vbox\(V excl

DNA∪V excl
TF )

[exp(−βU(r))− 1] d3~r

)

≈ ln(Vbox)− V excl
DNA/Vbox − V excl

TF /Vbox + V excl
overlap/Vbox +

1

Vbox

∫
Vbox\(V excl

DNA∪V excl
TF )

[exp(−βU(r))− 1] d3~r

And so

−β∆Fcrowd = lnZfinal − lnZinitial

≈ V excl
overlap/Vbox

+
1

Vbox

∫
Vbox\(V excl

DNA∪V excl
TF )

[exp(−βU(r))− 1] d3~r

− 1

Vbox

∫
Vbox\V excl

TF

[exp(−βU(r))− 1] d3~r

= V excl
overlap/Vbox −

1

Vbox

∫
V excl
DNA\V excl

TF

[exp(−βU(r))− 1] d3~r (14)

Once more, we are talking about a single crowder so φ = Vcrowd/Vbox and we have

−β∆Fcrowd = φ

[
V excl

overlap

Vcrowd
− 1

Vcrowd

∫
V excl
DNA\V excl

TF

[exp(−βU(r))− 1] d3~r

]
+O(φ2) (15)

In the integrals, the origin is at the center of the TF. The integration regions in these
equations are shown in Fig. 6.

A few comments. First, when there is no potential, the integral vanishes and we recover
the previous result of Eq. 10. Second, one sees that an attractive interaction between the
TF and the crowders leads to a positive value of the integral. The effect of this is to decrease
the strength of the effective attraction induced by the crowders. This makes sense: if the
TF is very strongly attracted to the crowders, any direct contact with the DNA (although
favored by the depletion interaction) also means less favorable TF-crowder contact.
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Figure 6: Schematic of several regions, including the integration region in Eq. 15 (right
side).
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Figure 7: Coefficient of −β∆Fcrowd to first order in φ, including dependence on ε. Negative
values of ε correspond to repulsion between TF and crowders; positive values correspond
to attraction.

Numerical Values

To estimate the integral in Eq. 15 numerically, we need to specify the potential U(r) acting
between the TF and the crowders. We use

U(r) = −ε · exp

[
−r − rt − rc

λ

]
(16)

Note that a positive value of ε corresponds to an attractive potential. For the range of
the interaction potential, we will use a value of λ = 0.5 nm. Now we can do the integral
numerically. The result is shown in Fig. 7. One sees that, as expected, the coefficient
decreases with ε, changing sign at ε ≈ 2.3 kBT . It is interesting that attractive interactions
can have a very strong effect, while repulsive interactions seem to have a small effect. The
same information is shown in a different form in Fig. 8, which shows the binding free energy
estimated, again, to first order in φ, but now with the exact ε dependence that came from
treating the “one crowder” problem exactly. Note that as in Fig. 5 these should give the
exact slope at small values of φ. An interesting question is: how do the actual curves
deviate from these linear approximations? Do they always curve “up” as in Fig. 5? Do
they always curve away from zero?
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Figure 8: Approximation of−β∆Fcrowd to first order in φ, including the exact ε dependence.
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