
Estimating the diffusion constant from a trajectory

Suppose we make a number of observations of the position of an object un-
dergoing Brownian motion. How can we best estimate the diffusion constant
D from those observations? How good will our estimate be? We will work
in one dimension for the sake of simplicity.

Warm-up: a single observation

Even a single observation, where we measure the position X(t1) of the dif-
fusing object at time t1, is enough to make a very crude estimate of the
diffusion constant D. Using the relation

〈X2
1 〉 ≡ 〈X(t1)2〉 = 2D t1 (1)

it is clear that the only good estimator for D is the following (we will always
use hats to denote estimators):

D̂1 ≡
X2

1

2 t1
(2)

Just how crude is this estimate for D, which is based on a single observation
of the diffuser? Its variance is

Var D̂1 = 〈D̂1
2〉 − 〈D̂1〉2 (3)

To evaluate the first term, we use the fact that the fourth moment of a Gaus-
sian variable X is related simply to the second moment (“Wick’s Theorem”):

〈X4〉 = 3〈X2〉2 (4)

Therefore

Var D̂1 =
3 · (2D t1)2

(2 t1)2
−D2 = 2D2 (5)

So, not such a good estimate: our standard relative error will be 141%! In
addition to finding the variance of the estimator, we can also compute its
complete distribution. If we divide our estimator by D, we get a quantity
that is the square of a normalized, centered Gaussian. That means that
D̂1/D follows a χ2 distribution with a single degree of freedom. Fortunately,
there is an analytic expression for this distribution. From it, we get

Prob

[
D̂1

D
= x

]
=

1√
2 · Γ(1

2)
· x−1/2e−x/2 (6)

This probability distribution is plotted in Figure 1. Note that it diverges for
small values!
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Figure 1: Probability density for the estimator D̂1.

The first nontrivial case: two observations

If the diffuser’s position is measured at two times t2 > t1, giving results X1

and X2, how do we now estimate the diffusion constant? There are at least
three terms that we can play with:

X2
1

2 t1
,

(X2 −X1)2

2 (t2 − t1)
,

X2
2

2 t2
(7)

Each of these is an unbiased estimator for D. We will consider the estimator
D̂2 to be a weighted average of these terms, with coefficients chosen later so
as to minimize the variance (thus giving the ‘best’ estimator).

D̂2 ≡ α ·
X2

1

2 t1
+ β · (X2 −X1)2

2 (t2 − t1)
+ (1− α− β) · X

2
2

2 t2
(8)

The variance of D̂2 can be calculated. It’s not worth writing out all the steps
here; the result is a nasty expression quadratic in α and β, which can then
be minimized with respect to these parameters. One finds that the minimal
variance is achieved when α = β = 1/2. That is, the best estimator for D
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using two observations is

D̂2 ≡
1
2

[
X2

1

2 t1
+

(X2 −X1)2

2 (t2 − t1)

]
(9)

Its variance is

Var D̂2 =
3
4
·D (10)

There are two interesting things to note. First of all, the optimal estimator
involves the squared displacement from time 0 to t1 and the displacement
from t1 to t2, but not the total displacement from 0 to t2. It seems that
this information is redundant, and would not improve our estimate at all.
A second interesting point is that the quality of our estimator (as measured
by its variance) does not depend at all on the times at which we measure
the position of the diffuser. We could take t1 to be extremely small and t2
to be very large, or we could take t2 = 2 · t1. It doesn’t matter at all. If
you go through the calculation of the variance, you find that the times t1
and t2 cancel out of the result. This is a reflection of the scale-invariance of
true Brownian motion, I think. For a real diffusing particle, the choice of
observation times would probably not matter, so long as the time intervals
were larger than the characteristic decay time of the velocity autocorrelation
function.

The case of n observations

Now we move on to the general case. It’s pretty easy, now, to guess what
the optimal estimator for the diffusion constant should be. But let’s derive
it in a different way, from the maximum likelihood criterion. That is, we will
choose D̂n so that, given some observed values x1, x2, . . . xn, the likelihood
of these observations is maximized (assuming Brownian motion with diffu-
sion constant D̂n). That likelihood of the observations, assuming diffusion
constant D, is

ProbD(X1 = x1, X2 = x2, . . .) =
n∏

k=1

exp
[
−(xk − xk−1)2/4D(tk − tk−1)

]√
4πD(tk − tk−1)

(11)

Here we have defined t0 = 0 for convenience. Maximizing the logarithm of the
likelihood is equivalent (and much easier!) than maximizing the likelihood.

0 =
∂ log ProbD

∂D
=

n∑
k=1

(xk − xk−1)2

4D2(tk − tk−1)
− n

2D
(12)
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We define the estimator D̂n to be the value of D that maximizes the likeli-
hood:

D̂n =
1
n

n∑
k=1

(xk − xk−1)2

2 (tk − tk−1)
(13)

To analyze the quality of this estimator, let’s relate it to a random variable
with a known distribution. Specifically, we note that nD̂n/D is a sum of
n centered Gaussians normalized to have unit variance. Such a random
variable is distributed according to a χ2 distribution with parameter (number
of degrees of freedom) n:

nD̂n

D
=

n∑
k=1

(xk − xk−1)2

2D(tk − tk−1)
∼ χ2

n (14)

This distribution, which takes on positive real values only, has the probability
density function (according to Wikipedia)

f(x) =
xn/2−1e−x/2

2n/2Γ(n/2)
(15)

In our problem, x denotes the possible value of nD̂n/D. This implies (via the
usual confusing change-of-variables thing with probability density functions)
that D̂n/D is distributed according to

Prob

[
D̂n

D
= x

]
= nf(nx) =

n(nx)n/2−1e−nx/2

2n/2Γ(n/2)
(16)

Several of these distributions are plotted in Figure 2. It can be shown that

Var D̂n =
2
n
·D2 (17)

With n = 50 observation points, our relative error is 20 %. To get an estimate
whose standard (relative) error is 10 %, one needs 200 observation points!

“Sufficiency” of D̂n

We’ve derived the estimator D̂n as the maximum likelihood estimator for
the diffusion constant D, given n observations of the diffuser’s position. But
can we be sure that this is really the best possible estimator given those
data? In statistics there is a concept of a “sufficient statistic.” Our estimator
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Figure 2: Probability density for the estimator D̂n for n = 1, 2, and 50.

D̂n is said to be a sufficient statistic for D if the conditional probability of
observing the values x1, x2, . . . , xn, assuming a fixed value of D̂n, does not
depend on the underlying parameter D. That is:

ProbD

(
x1, x2, . . . , xn|D̂n = D0

)
independent of D (18)

This is rather a tricky concept. Intuitively, it means that once the value of
the estimator D̂n has been specified, there is no further information, in the
observed data, concerning the value of the parameter D to be estimated.
Now, it is possible (a little tricky) to verify that this equation holds for our
case. Fortunately though, there is a theorem called the Fisher-Neyman fac-
torization theorem that gives an easy characterization of sufficient statistics.
It tells us that D̂n is a sufficient statistic for D if and only if the probability
of the observations can be factored as follows:

ProbD(x1, x2, . . .) = h(x1, x2, . . .) · g(D, D̂n) (19)

That is, the likelihood function can be written as the product of a factor
which is independent of the parameter to be estimated (D), times a factor
that depends on the observed data only through the estimator D̂n. In our
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case, looking at the likelihood function in Eqn. (11), we can just take h =
1. Our likelihood function only depends on the observed data through the
estimator! Therefore the estimator is a sufficient statistic for D.
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