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Abstract

Theory of Liquid-Liquid Phase Separation in Model Lipid Bilayers

Gregory Garbès Putzel

Chair of the Supervisory Committee:
Professor Michael Schick
Department of Physics

This thesis presents phenomenological and theoretical work related to phase separation in

fluid lipid bilayers. We describe a phenomenological model which explains the liquid-liquid

phase behavior of the ternary mixture DPPC/diphytanoylPC/cholesterol on the basis of

interactions between these components, which depend on the extent of orientational order

of the saturated lipid acyl chains. An extension of this model to include complexes of lipids

illustrates the effect on phase behavior of chemical crosslinking via a reduction of mixing en-

tropy, which could explain the experimentally observed phenomenon of crosslinking-induced

phase separation. We also present a phenomenological model of lipid bilayers with coupled

leaflets that describes the conditions under which compositionally asymmetric bilayers un-

dergo phase separation. This model reproduces several experimental observations. We also

analyze the fluctuations of phase domain boundaries in phase-separated bilayers with cou-

pled leaflets, showing how the interleaflet coupling energy relates to the spatial extent of

areas of mismatch between the states of the apposing leaflets. We estimate the magnitude

of this interleaflet coupling on the basis of the molecular mean-field model developed by

Elliott et al. Finally, we examine the possibility that the presence of lipids with electrically

charged head groups in the inner leaflet of the cell plasma membrane leads to compositional

fluctuations with a characteristic spatial extent. By calculating the effect of electrostatic

interactions on the spectrum of compositional fluctuations, we derive a criterion by which

this characteristic length is manifest in the structure function.
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Chapter 1

INTRODUCTION

The motivation for the work presented in this thesis is the idea that the principles and

methods of physics can help to explain how lipids are organized in the cell membrane. We

will discuss phenomenological and theoretical models inspired by in vitro experiments on

mixed lipid bilayers, themselves partly intended to shed light on the biological phenomenon

of “lipid rafts.” According to the lipid raft hypothesis [83], the cell membrane is not a

uniform mixture of lipids and proteins, but rather contains domains rich in saturated lipids

and cholesterol which diffuse in, but are compositionally distinct from, the surrounding

membrane. These rafts have been implicated, via biochemical assays, in a great number

of biological processes taking place at the cell plasma membrane [132]. These biochemical

experiments do not, however, answer any questions about the physical nature of lipid rafts.

What molecular interactions cause the lipids and proteins present in rafts to remain separate

from other molecules making up the cell membrane? How large are the rafts, and how

long do they last? Biophysicists were motivated by these and other questions to study

compositional inheterogeneity in model experimental systems, lipid bilayers composed of a

small number of molecular species. These model membranes are much simpler than the cell

membranes they are intended to shed light on, and thus lend themselves to a more complete

characterization through repeatable experiments. In some lipid mixtures, experimentalists

have observed the coexistence of two distinct liquid phases, called the “liquid-ordered” and

“liquid-disordered” phases. Because the liquid-ordered phase is rich in ordered, saturated

lipids and cholesterol, it has come to be viewed as the biophysical correlate of “lipid rafts”

in the context of these simple model systems. A view has emerged according to which lipid

rafts in the cell membrane are domains of the liquid-ordered phase in coexistence with, and

surrounded by, a continuous region of the liquid-disordered phase. This picture presents a

number of difficulties, to be discussed in the concluding chapter, and must be viewed as an
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approximate characterization of lipid rafts. Nevertheless, because this view connects the

phenomenon of lipid rafts to the thermodynamic phase behavior of simpler and more robust

model systems, it brings questions regarding the nature of rafts into the province of Physics.

In this introductory chapter, two concepts are presented which will form the background

for the research described in the following chapters. These are the biological phenomenon of

lipid rafts and the related concept of liquid-liquid phase coexistence in the model membranes

studied in vitro by experimentalists. Before introducing these ideas, however, we briefly

describe the molecules which will occur throughout this work and how they interact.

1.1 Lipids and their Interactions

The left side of Figure 1.1 shows a saturated lipid molecule known as dipalmitoyl phos-

phatidylcholine, or DPPC for short. The first part of the name, “dipalmitoyl,” describes

Figure 1.1: Left: A molecule of DPPC (dipalmitoyl phosphatidylcholine). Right: A segment
of a polyethylene molecule.
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the lipid’s two acyl chains, shown as jagged lines in the figure. These consist of 16 car-

bon atoms linked together covalently. What makes these chains “saturated” is that each

carbon atom is bonded to two hydrogen atoms not shown in the figure. The right side of

figure 1.1 shows a segment of a molecule of polyethylene, a polymer out of which plastic

bags are made. From the figure it is clear that polyethylene has the same basic chemical

structure as the acyl chains of DPPC. Like polyethylene, the acyl chains are hydrophobic.

When brought together in water, DPPC molecules arrange themselves into bilayers with

the hydrophobic chains facing inward. The phosphatidylcholine (PC) head group of DPPC

has a dipole moment and thus is hydrophilic. Molecules such as lipids, having hydrophobic

and hydrophilic parts, are called “amphiphilic” and often form structures such as bilayers

in water. The self-assembly of these structures is driven by the same “hydrophobic effect”

responsible for the phase separation of oil and water. It results from the fact that hydrocar-

bons disrupt the network of hydrogen bonds which water molecules form with each other.

This disruption results in a lowering of entropy, and this entropic penalty is responsible for

the hydrophobic effect [103].

At a temperature of roughly 140 ◦C, polyethylene melts, undergoing a phase transition

from a solid to a liquid state [100]. A similar phase transition occurs at lower temperatures

in bilayers composed of DPPC or other lipids having saturated acyl chains. Below about

41 ◦C [58] a DPPC bilayer exists in a tightly packed solid state called the “gel phase,” in

which almost all of the carbon-carbon bonds are as shown in Figure 1.1; the bonds are

said to be in the trans configuration. The gel phase is further characterized by very slow

lateral diffusion of lipids. Above 41 ◦C the DPPC bilayer is in a fluid state characterized by

rapid lateral diffusion of lipids. The acyl chains of the lipids are also more loosely packed

in the liquid state, and undergo thermal fluctuations in which the carbon-carbon bonds

are in the the so-called gauche state, introducing a bend into the regular zig-zag structure

shown in Figure 1.1. The gel and liquid phases are depicted schematically in Figure 1.2.

The phase transition between the gel and liquid phases of a lipid bilayer is often called the

“main-chain transition,” or simply the “melting transition.” Here we will always refer to it

as the gel-liquid transition. Like all phase transitions induced by a change in temperature,

the gel-liquid transition is driven by a competition between energy and entropy [100]. In the
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Gel phase Liquid phase

Figure 1.2: The gel and liquid phases of a lipid bilayer

low-temperature gel phase, almost all of the carbon-carbon bonds in the lipid acyl chains are

in the trans rather than gauche state. This configuration gives the chains an overall linear

structure and allows them to pack together tightly. This tight packing is favorable in terms

of attractive Van der Waals interactions, but has low configurational entropy, since a lipid

that is tightly packed among its neighbors can not explore configurations other than the

all-trans one. These non-trans configurations occur more often at higher temperatures, but

the restrictive tight packing prevents this change from happening independently in each of

the lipids. Instead, as the temperature is increased the lipids undergo a cooperative change

to a more disordered, less tightly-packed state, resulting in a first-order gel-liquid transition

at a specific temperature Tm. As shown in Figure 1.2, the change in orientational order of

the lipid hydrocarbon chains leads to a difference in thickness between the gel and liquid

phases which serves as a convenient order parameter for the gel-liquid transition. This

transition is closely related to the melting transition of polyethylene; in fact, the gel-liquid

transition temperatures of a series of saturated lipids with increasingly longer acyl chains

can be extrapolated to the melting transition temperature of polyethylene [101].

The gel phase is of limited interest in biology, since the lipid membranes of living cells

are in a fluid state. A rare instance of the biological relevance of the gel phase is in the

outermost layer of skin tissue, which is composed of dead cells [95]. In this work we will

be concerned only with the liquid state of lipid bilayers, our principle interest being in the

coexistence of two or more liquid phases rather than in the gel-liquid transition.
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A saturated lipid molecule such as DPPC acquires flexibility due to the thermally excited

gauche states of its carbon-carbon bonds. In the DPPC molecule’s ground state, these bonds

are in the trans configuration, making the chain zig-zag locally but remain straight overall.

In contrast, “unsaturated” lipids have acyl chains with one or more carbons bound to only

one hydrogen atom, rather than two. These carbons come in neighboring pairs which share a

double bond. Figure 1.3 shows a molecule of palmitoyl-oleoyl phosphatidylcholine (POPC),

which has one saturated (palmitoyl) and one unsaturated (oleoyl) acyl chain.

Figure 1.3: The lipid POPC. Figure from commons.wikimedia.org.

The double bond present in the unsaturated acyl chain of POPC introduces a kink in

the chain which is permanent (quenched) rather than thermally excited. Lipids such as

POPC or dipalmitoyl PC (DOPC), which has two unsaturated chains, are thus prevented

from packing tightly together in the same way that saturated lipids can. This biases the

competition between attractive Van der Waals interactions and entropy in favor of the latter,

with the result that at room temperature DOPC is in the liquid state, whereas a saturated

lipid of comparable acyl chain length is in the gel (solid) state. This fact is manifested
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in the kitchen, where butter composed of saturated fats is solid, but olive oil, which is

composed of unsaturated fats, is liquid [6]. Bilayers made of unsaturated molecules must be

cooled to temperatures below the freezing point of water before forming a solid phase [7].

Thus we will sometimes refer to saturated lipids as “high melting temperature” lipids and

to unsaturated lipids as “low melting temperature” lipids. This characterization allows us

to group together with the unsaturated lipids those lipids which, although not chemically

speaking unsaturated, have structures which prevent tight chain packing and thus have low

melting temperatures.

In bilayers composed of a single species of saturated lipid, the gel-liquid transition occurs

at a single specific temperature. This is no longer the case in bilayers that are composed

of mixtures of saturated and unsaturated lipids. At temperatures between the gel-liquid

transitions temperatures of the unsaturated and saturated lipids, there is coexistence be-

tween a gel phase and a liquid phase in some range of compositions. A limited amount of

unsaturated lipids is soluble in the gel phase, beyond which any excess unsaturated lipids

(and some saturated ones) form a liquid phase that coexists with the gel phase. This is

illustrated in Figure 1.4, which shows a phase diagram obtained by Curatolo et al. [19] for a

binary mixture of POPC and DPPC. The phase diagram shows a large region of composi-

ool 
~ . 4 0  o o 

• o o 

5O 
% DPPC 

Liquid

Liquid-Solid

Solid

Figure 1.4: Phase diagram of POPC-DPPC binary mixture. Figure taken from [19].

tions and temperature in which a liquid phase rich in POPC coexists with a gel phase rich
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in DPPC.

1.2 Cholesterol and the Liquid-Ordered Phase

Lipids with saturated tails, as well as lipids having one saturated and one unsaturated tail,

occur in abundance in the cell plasma membrane. In animal cell membranes another major

component is cholesterol, which accounts for 20 to 50 percent of the lipid molecules [95]. A

molecule of cholesterol is depicted in figure 1.5. The bulk of the cholesterol molecule consists

OO

H

Figure 1.5: A cholesterol molecule.

of a ring structure which is hydrophobic but rigid, unlike the acyl chains of lipids such as

DPPC and DOPC. This ring structure packs well with acyl chains of saturated lipids when

these are well-ordered. This leads to the “ordering” effect of cholesterol: the addition of

cholesterol to a bilayer of saturated lipids increases the orientational order of the acyl chains

of the lipids, as has been measured by nuclear magnetic resonance (NMR) [126]. In addition

to its sterol ring structure, cholesterol has a short, flexible hydrophobic chain. The only

hydrophilic part of the cholesterol molecule is a single hydroxide (OH) group. Compared to

phospholipids such as DPPC and DOPC, cholesterol is therefore relatively weakly anchored
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to the bilayer-solvent interface, leading to relatively fast “flip-flop” of cholesterol from one

leaflet of the bilayer to another [53, 15].

When added to a lipid bilayer in its liquid state, cholesterol may, under some circum-

stances, give rise to coexistence between two distinct liquid phases: the liquid-disordered

(Ld) and the liquid-ordered phases (Lo). Of the two coexisting phases, the liquid-ordered

phase has a higher concentration of cholesterol, and the tails of its saturated lipids have

a greater degree of orientational order; that is, they are more closely aligned with the di-

rection normal to the bilayer. The conditions under which liquid-liquid coexistence occurs

in mixed lipid bilayers are a matter of longstanding controversy due to differing interpre-

tations of key experiments [145]. We briefly describe these experimental findings and state

our interpretation of their results, since they are the basis for our phenomenological work

described in the next chapter.

The prevailing concept of the liquid-ordered phase, as well as the terms “liquid-ordered”

and “liquid-disordered,” come from a theoretical analysis by Ipsen et al. [63] of data from

several experiments [121, 151] on the phase behavior of binary mixtures of saturated lipids

and cholesterol. Ipsen et al. interpreted these results as indicative of the coexistence of

two liquid phases in a range of temperatures above the melting transition of the saturated

lipids, and proposed the phase diagram shown in Figure 1.6. In this figure the phases are

labeled according to two characteristics: liquid (l) versus solid (s) and ordered (o) versus

disordered (d). Liquid (l) and solid (s) refer to the translational degrees of freedom of

molecules. In liquid phases, there is no crystalline order in the positions of molecules,

which diffuse freely. In the solid phase (which we refer to as the gel phase) the molecules

are on average at fixed positions with respect to their neighbors and molecular diffusion

is very slow. The terms “ordered” and “disordered” refer to the configurational degrees

of freedom of the saturated lipids, that is, to the extent of orientational order of their

hydrophobic chains, or equivalently the number of gauche bonds. Whereas it was clear

that in the liquid-gel transition of pure lipid bilayers, both translational and configurational

degrees of freedom undergo a simultaneous change, Ipsen et al. suggested that the addition

of cholesterol effectively decoupled these degrees of freedom, giving rise to a liquid-ordered

phase having the molecular mobility characteristic of liquid phases [124], but also a degree
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sensus has been reached concerning the basic 

answers to these questions. Addition of cholesterol 

leads to a more conformationally ordered state of 

the acyl chains of the phosphatidylcholine mole- 

cules [10-17]. Within a given phase, cholesterol 

has only a small effect on the molecular transla- 

tional and rotational motions [33-35]. At low 

cholesterol concentrations a slight broadening of 

the main phase transition occurs whereas at higher 

concentrations the liquid phase of the pure bilayer 

is dramatically stabilized. These results were only 

obtained with considerable effort and the de- 

termination of the phosphatidylcholine (PC)- 

cholesterol phase diagram in excess water turned 

out to be a particularly elusive problem. Recently 

Vist and Davis [16,17] presented a careful study of 

the d62-dipalmitoyl-PC-cholesterol multi-bilayer 

system using both deuterium nuclear magnetic 

resonance (NMR) and calorimetry. The system 

was therefore characterized on both the molecular 

and the thermodynamic level. The study was per- 

formed in the temperature range of 20-60 °C and 

from 0 to 30 mol% cholesterol. Analysis of the 

data from both of these experiments plus results 

from electron paramagnetic resonance (EPR) mea- 

surements [10] leads to the phase diagram of Fig. 

1. Sections of the phase diagram are in agreement 

with data obtained by several other techniques 

[29,32] as also shown in Fig. 1. 

In Fig. 1 and in the text below we have used a 

notation for the phases which describes both the 

two-dimensional translational order and the 

chain-conformational order occurring in the 

phases: The gel phase is referred to as the solid- 

ordered (so) phase, where s, for solid, refers to the 

crystalline order and o, for ordered, to the average 

acyl-chain conformation. Similarly, the liquid- 

crystalline phase at low cholesterol concentration 

is denoted liquid-disordered (ld) whereas at high 

cholesterol concentration there is a liquid-ordered 

(lo) phase. The latter phase has not previously 

been characterized as such. The nomenclature is 

motivated by the fact that several independent 

experimental studies have demonstrated the 

simultaneous occurrence of a liquid-crystalline 

phase and high acyl-chain order. Micromechanical 

studies [32] show that the bilayer at high 

cholesterol concentrations behaves as a liquid with 

no surface shear rigidity but a greatly reduced 

163 

50 I i 
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3 O  

i I 

0 10 20 30 

MOLE % CHOLESTEROL 

Fig. 1. Experimental phase diagram for the DPPC-cholesterol 

system as determined by  N M R  spectroscopy and differential 

scanning calorimetry ( ) [16,17[, EPR spectroscopy 

( . . . . . .  ) [10], freeze-fracture ( . . . . . .  ) [29], and micromecha- 

n i c s (  . . . . .  ) (Needham, D. and Evans, E., unpublished data). 

Note  that the N M R  and calorimetry studies were carried out 

on d62-DPPC for which T m is about  38 ° C. The experimental 

data have been scaled accordingly to facilitate the comparison 

within a single figure. 

membrane-area compressibility. The N MR mea- 

surements show that the deuterium order parame- 

ters approach the value 0.5 which is typical of an 

all-trans rotating chain [16,17]. The N M R  spectra 

also show that diffusion is fast enough to average 

dipolar couplings even at very low temperatures 

[36]. A fast translational diffusion in this con- 

centration range is also demonstrated by the pho- 

tobleaching fluorescence studies [34]. 

The phase diagram of Fig. 1 shows several 

remarkable features which indicate that cholesterol 

interacts with phosphatidylcholine in an unusual 

way. Normally a solid is not as good a solvent as a 

liquid and the addition of an impurity results in a 

sizable freezing-point depression. The two-dimen- 

sional solid and liquid phosphatidylcholine phases 

do not initially respond in this way to cholesterol, 

which according to the phase diagram is almost as 

soluble in the solid ordered as the liquid dis- 

ordered phase at low concentrations. However, the 

situation completely changes for high cholesterol 

concentrations, where the liquid phase of the bi- 

layer is stable down to temperatures substantially 

lower than T m. Therefore, in the high concentra- 

tion regime, it is clear that cholesterol strongly 

favours the liquid phase over the solid phase in 

contrast to the low-concentration behaviour. There 

Figure 1.6: Phase diagram proposed by Ipsen et al. [63] for mixtures of saturated PC lipids
and cholesterol. Figure taken from [63]. The different lines come from several different
experiments and have been scaled to allow qualitative comparison.

of orientational order similar to that of the gel phase [151, 152]. Following the paper of Ipsen

et al., it became a consensus among many researchers that binary mixtures of saturated

lipids and cholesterol can show liquid-liquid phase separation; the phase diagram published

by Vist and Davis [152] has been especially influential in encouraging this view. Vist and

Davis studied the binary mixture of cholesterol and saturated DPPC using calorimetry as

well as nuclear magnetic resonance (NMR). They inferred the presence of two coexisting

phases from the broadening of the NMR spectrum of deuterated DPPC molecules, which

indicates that these lipids diffuse between distinct environments on the rapid NMR timescale

of 10µs [152].

With the availability of fluorescent-labeled lipids it became possible to visualize phase

separation in lipid vesicles directly on the micron scale. In this type of experiment, the

fluorescent-labeled lipid is present in different amounts in the two coexisting phases, giving

regions of those phases different fluorescence intensities. When this method was brought to

bear on binary mixtures of cholesterol and saturated lipids at temperatures above the gel-
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liquid transition of the latter, coexistence of two liquid phases was not observed [110, 144].

Thus observations of model membranes under fluorescence microscopy appear to disagree

with results obtained for the same systems by other methods such as nuclear magnetic res-

onance (NMR) as to whether these binary mixtures exhibit coexisting liquid phases. This

apparent disagreement is largely due to a difference in interpretation of experiments in

terms of the concept of thermodynamic phases. The experiments taken to indicate liquid-

liquid phase separation in saturated-cholesterol binary systems are also those which probe

length scales much smaller than those visible to fluorescence microscopy. For example, the

broadening of the NMR spectra of deuterated lipids in saturated lipid/cholesterol binary

mixtures indicates lateral inhomogeneities on the order of 25 nm [152] (for comparison, note

that a typical lipid takes up an area of roughly 0.5 nm2). In contrast, macroscopic phase

separation leads to a superposition of the distinct spectra associated with the liquid-ordered

and -disordered phases, as observed by Veatch et al. [147], rather than a single broadened

spectrum, except in the vicinity of a critical point where the two phases become indis-

tinguishable. There is broad agreement that experiments such as those of Vist and Davis

indicate compositional inhomogeneities on the nanometer scale; the question is only whether

these inhomogeneities should be considered as phase coexistence or instead simply as lateral

structure or fluctuations within a single liquid phase. Because of the connection that has

been drawn between liquid-liquid phase separation and the biological phenomenon of lipid

rafts [122], this question is relevant to that of the finite size of lipid rafts. In this work we will

take the view that phase coexistence is a purely macroscopic phenomenon, and that the ex-

perimental results of Vist and Davis [152] suggest the existence of nanoscale inhomogeneities

within a single phase, rather than phase separation, in saturated lipid/cholesterol mixed bi-

layers. The contrary view, in which these inhomogeneities are considered to be domains

of coexisting phases, is incompatible with a number of basic thermodynamic notions. For

example, the interpretation of thermodynamic behavior in terms of a phase diagram with

well-defined tie-lines relies on the fact that interfaces between coexisting phases contribute

negligibly to the free energy of a mixture. This is not the case for the “interfaces” surround-

ing nanoscale inhomogeneities. Most importantly, equilibrium thermodynamics provides a

clear distinction between a single phase and two phases in coexistence. This distinction is
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lost if we treat nanometer-sized inhomogeneities as coexisting domains; regions of the phase

diagram which one researcher may consider to be in a single phase will be considered by

another to yield two coexisting phases with very small domains.

In contrast to the situation occurring with saturated lipid/cholesterol binary mixtures,

liquid-liquid immiscibility is readily observed by fluorescence microscopy in model mem-

branes which are ternary mixtures of saturated lipids, unsaturated lipids, and cholesterol

[28, 43, 144]. Several of these mixtures have been studied systematically, resulting in phase

diagrams describing the conditions under which coexistence of two or more phases may

occur [21, 143, 147, 20]; a complete list of such phase diagrams is given in [89]. From

these studies a general understanding has emerged of which mixtures are capable of dis-

playing macroscopic liquid-liquid phase separation: namely, those which are mixtures of

high melting temperature lipids (saturated lipids), low melting temperature lipids (such as

unsaturated lipids), and cholesterol. Of particular interest has been the ternary mixture of

DiphyPC/DPPC/cholesterol studied by Veatch et al. [143], where the role of the low melt-

ing temperature lipid is played by diphytanoyl PC (DiphyPC), which has hydrophobic tails

that are branched rather than kinked as in unsaturated lipids. At temperatures above the

gel-liquid transition temperature of DPPC, Veatch et al. observed liquid-liquid immiscibility

in the ternary mixture but not in any of the corresponding binary mixtures, suggesting a

phase diagram of the type shown schematically in Figure 1.7. Such a phase diagram is

said to have a “closed-loop miscibility gap,” and highlights the necessity of all three com-

ponents of the mixture in order to observe liquid-liquid immiscibility. This unusual phase

behavior has led several researchers to propose phenomenological models in which simple

intermolecular interactions give rise to phase diagrams such as the one shown in Figure 1.7.

1.3 The Lipid Raft Hypothesis

Today, the liquid-ordered phase is considered by many to be closely related to nanometer-

scale domains of saturated lipids and cholesterol called “lipid rafts,” which are believed

to play a number of important roles in living cell membranes [131, 132]. However, the

idea of microdomains within the cell membrane predates the discovery of the liquid-ordered

phase, and goes back at least to the early 1980’s [67]. The more specific notion of “lipid
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tie-line slope, and tie-lines can assume any orientation with
respect to limiting binary mixtures, including an orientation
perpendicular to the DPPC/Chol axis (as in Fig. 8 B).
In our experiments, we observe that tie-lines indeed run

roughly perpendicular to the binary DPPC/Chol edge, even
for membranes with small amounts of diPhyPC. It is unlikely
that this tie-line orientation could be achieved if phase sep-
aration were present in the binary mixture. Our results suggest
that membranes of DPPC and cholesterol do not form co-
existing Lo and La phases above the DPPC chain melting
temperature for binary mixtures in the vicinity of our 2H NMR
tie-lines. Instead, we conclude that these binary membranes
form a single uniform liquid phase at these temperatures.

CONCLUSIONS

We observe coexisting liquid phases in ternary mixtures of
diPhyPC, DPPC, and cholesterol by both fluorescence mi-
croscopy and deuterium NMR. Using both experimental
methods, we find that this system is unusual because liquid

FIGURE 8 (A) If two liquid phases exist in vesicles containing binary

mixtures of DPPC and cholesterol above the DPPC chain-melting temper-
ature, then tie-lines through compositions close to the DPPC/cholesterol

binary axis lie roughly parallel to that axis. For example, the composition at

the open circle demixes along the dashed tie-line to form two liquid phases

with compositions at the solid circles. Only one critical point (star) is ex-
pected. (B) In contrast, two critical points (stars) are found for a closed-loop
miscibility gap, and tie-lines are allowed to run roughly perpendicular to the

DPPC/cholesterol axis (as observed in the diPhyPC/DPPC/Chol system).

TABLE 1 Miscibility transition temperatures for mixtures of
diPhyPC/DPPCd62/Chol

Transition temperature

Lipid mixture Microscopy 2H NMR

1:1 DiPhyPC/DPPCd62 1 30% Chol 42 6 2!C 43 6 2!C
1:2 DiPhyPC/DPPCd62 1 40% Chol 43 6 2!C 42 6 2!C
1:4 DiPhyPC/DPPCd62 1 40% Chol 43 6 2!C 43 6 2!C

FIGURE 7 Tie-lines calculated from 2H NMR spectra through the composition 1:1 diPhyPC/DPPC1 30% cholesterol at different temperatures are shown

as thick blue lines. Calculated endpoints are represented by large open circles. Errors in the calculated endpoints are represented by the splay of the blue line,

and tick marks around each endpoint. In most cases, calculated errors are on the order of the size of the large open circles. Tie-lines are superimposed on

fluorescence microscopy data recording the phase behavior of GUVs of 34 different lipid compositions. Black circles, coexisting liquid phases; open circles,
one uniform liquid phase; gray squares indicate coexistence of solid and liquid(s). 2H NMR tie-line temperatures are shifted 12.5!C to correct for lower

transition temperatures in perdeuterated lipid samples (20).

4434 Veatch et al.

Biophysical Journal 90(12) 4428–4436

Figure 1.7: Phase diagram of a ternary mixture with closed-loop miscibility gap. Figure
taken from [143].

rafts” composed of saturated sphingolipids and cholesterol in the outer leaflet of the cell

membrane, as well as the term itself, was proposed by Simons and collaborators [133, 131] to

explain the sorting of lipids in epithelial cells lining body cavities. These cells are polarized

into distinct “apical” and “basolateral” surfaces. Proteins anchored to the cell membrane

by glycosylphosphatidylinositol (GPI) lipid chains were found to be expressed primarily in

the apical cell membrane, which itself is rich in saturated sphingolipids. This fact led to the

hypothesis [133] that sphingolipid-rich microdomains or “rafts” formed in the Golgi complex

act as sorting platforms for directed transport of lipids and proteins to the apical membrane.

An important development in the field was the discovery [14] that GPI-anchored proteins,

together with sphingolipids, were found in a fraction of the cell membrane which resisted

dissolution by the detergent Triton X-100. Following this, the presence of a protein in the

“detergent-resistant fraction” of the cell membrane came to be considered as grounds for

claiming that the protein partitioned preferentially into lipid rafts. Under this functional

biochemical definition, a large number of biological processes became implicated with lipid
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rafts, going beyond mere protein and lipid sorting [133, 131] to including viral infection

[40] and signal transduction [132, 90]. The study of lipid rafts grew rapidly during the

first decade of the twenty-first century, producing hundreds of articles, numerous reviews

[122, 13, 132, 33, 98, 134, 55, 64, 129, 83], and at least two books [90, 44]. Several authors

have expressed skepticism [130] toward the functional definition of lipid rafts in terms of

detergent resistance assays, and consequently toward much of the research implicating rafts

with biological processes. Skeptics cite, among other things, evidence that Triton X-100 can

itself lead to the formation of phase-separated domains [57] or perhaps to the coalescence

of previously existing smaller domains [50]. Although there is mounting evidence for lateral

inhomogeneity in cell membranes from a number of independent experimental methods

[55, 64, 83], it should be kept in mind that connections drawn between lipid rafts and

specific biological processes are still largely based on the presence of proteins in the detergent

resistant fraction, or even on the dependence of processes on levels of cholesterol [130].

The lipid raft concept has evolved considerably since the idea was proposed by Simons

and collaborators [83]. The physical basis for the formation of sphingolipid-rich rafts was

initially thought to be the ability of the head groups of these lipids to form networks of hy-

drogen bonds [133, 131]. The current emphasis on the interactions of lipid acyl chains and

on the effect of cholesterol derives from the confluence of lipid raft research and the previ-

ously mentioned studies of liquid-liquid phase coexistence in model membranes containing

cholesterol. Lipid rafts have come to be seen [122] as liquid-ordered domains coexisting

with a majority liquid-disordered phase. Differences in opinion regarding the status of

“nanodomains” notwithstanding, liquid domains within model liquid membranes are well-

defined objects which have been studied in the hopes of shedding light on the physical basis

of lipid raft formation. The connection between rafts and liquid-liquid coexistence has raised

a number of questions, the most important being the size of lipid rafts. If they exist at all

[130], lipid rafts must be too small to be visible by optical microscopy; currently they are

believed to be tens or hundreds of nanometers in size [112]. Such a small size presents an

obstacle to viewing rafts as phase-separated liquid-ordered domains, which would tend to

merge into larger domains due to the influence of line tension (the two-dimensional equiva-

lent of surface tension). A number of mechanisms have been proposed to explain the finite
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size of lipid rafts. These will be discussed in the concluding chapter; here we note only that

the case for associating lipid rafts with liquid phase domains has been greatly strengthened

by the observation of liquid-liquid phase separation [8, 146] in “blebs,” lipid vesicles derived

directly from cell plasma membranes.

1.4 Problems Addressed in this Thesis

In this thesis, we will discuss a number of theoretical and phenomenological approaches to

the study of liquid-liquid phase separation and compositional fluctuations in lipid bilayers

composed of mixtures of lipids and cholesterol. Some of this work has been from our own

research, namely:

• A phenomenological theory [117] of the ternary mixture of diphyPC/DPPC/cholesterol

described in section 2.1.

• The use of this model to examine the effects on phase behavior of lipid cross-linking

[118].

• A phenomenological model of a phase-separating bilayer with coupled leaflets [116],

presented in section 3.2.

• The analysis in section 3.6 of the fluctuations of domain boundaries in such bilayers.

• The microscopic calculation (see section 3.7) of the the interleaflet coupling on the

basis of the model of Elliott et al. [36].

• The treatment in section 4.2 of the effect of electric charges on the phase diagram of

the ternary mixture described in section 2.1.

• The analysis (in collaboration with David Allender) of compositional fluctuations in

charged mixtures (sections 4.3 and 4.4).
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Chapter 2

LIQUID-LIQUID PHASE SEPARATION IN MODEL MEMBRANES

During the past ten years, several research groups made observations of large-scale (that

is, micron scale) liquid-liquid phase separation in model lipid bilayer vesicles [28, 21, 145].

In several cases, researchers have mapped out phase diagrams [89] that summarize the

conditions under which a mixed lipid bilayer will separate into regions of two or more

different phases. The model systems under consideration in these experiments, although

far simpler than the cell plasma membrane, are still sufficiently complex to give rise to

a rich phase behavior which demands theoretical explanation. This chapter describes

phenomenological and theoretical models that attempt to explain the existence of liquid-

liquid coexistence. We present our phenomenological model [117] of the ternary mixture of

DPPC/DiphyPC/cholesterol, whose unusual phase behavior was mapped out by Veatch et

al. [143]. This is followed by an application of this model [118], which gives a possible mecha-

nism for the experimentally observed phenomenon of crosslinking-induced phase separation.

This has biological relevance due to the important role played by molecular cross-linking

in cellular signaling processes, particularly in immune responses [132]. The chapter ends

with a review of several microscopic theories of lipid bilayers. The microscopic model of

Elliott et al. [36] describing ternary mixtures of saturated lipids, unsaturated lipids, and

cholesterol will be discussed at some length, since it will be used in Chapter 3 to investigate

the magnitude and nature of the coupling between the two leaflets of a mixed bilayer.

2.1 Phenomenological Modeling of Liquid-Liquid Phase Separation

As a first approach to understanding the thermodynamic behavior of a mixed lipid bilayer, it

is natural to seek a simple phenomenological expression for the appropriate thermodynamic

potential describing that system, namely the Helmholtz free energy per molecule f(s, u, c, T )

as a function of the mole fractions of saturated lipids (s), unsaturated lipids (u), and
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cholesterol (c), as well as the temperature T ; in point of fact there are only two independent

mole fractions and we may eliminate one: u = 1− s− c. The expression for the free energy

is designed so that the phase diagram calculated from it reproduces as closely as possible

the phase behavior known from experiment. The limitations of this approach are clear:

with sufficiently many adjustable parameters, one may always find a free energy function

whose phase diagram matches the experimental one arbitrarily well. For this reason the

phenomenological approach is only useful if the free energy function is simple, containing

only a few terms that must furthermore be consistent with, and motivated by, whatever

knowledge we already have of the system. The purpose of a phenomenological theory of

this kind is to provide a simple guide to thinking about the thermodynamics of a complex

system. We should not expect a phenomenological theory of a lipid mixture to enjoy the

same quantitative success as, for example, the phenomenological Ginzburg-Landau theory of

superconductivity [23], which is guided by a symmetry of the system as well as the existence

of a small parameter.

The absence of liquid-liquid immiscibility in binary mixtures seems at first sight to

rule out phenomenological models relying solely on pairwise binary interactions. If phase

separation is driven by a repulsion between two components of a mixture, then one expects

to observe immiscibility in the corresponding binary mixture. In fact, it is possible for a

free energy function involving only binary interactions to reproduce a closed-loop miscibility

gap [115]; however, this requires unreasonably large attractive intermolecular interactions.

By including a ternary interaction proportional to u · s · c as well as binary interactions

one may easily produce phase diagrams with closed-loop miscibility gaps [120, 62]. Due

to statistical correlations, such a term is always present in the free energy, even when the

Hamiltonian contains only binary interactions. However, it is physically unclear why the

coefficient of this term should be large enough to lead to a closed-loop miscibility gap.

McConnell [93] proposed a simple model which explains the closed-loop miscibility gap by

positing a reversible chemical reaction in which cholesterol and saturated lipids together

form “condensed complexes” that interact repulsively with unsaturated lipids. The system

is treated as a four-component mixture of saturated and unsaturated lipids, cholesterol, and

condensed complexes. The interactions between these components are pairwise. For the
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purposes of illustrating how McConnell’s theory predicts a closed-loop miscibility gap, we

make a few simplifying assumptions. We include only a single pairwise interaction, namely

the repulsion between condensed complexes (with mole fraction z) and unsaturated lipids

(with mole fraction u). We also assume that cholesterol and saturated lipids bind in pairs,

and that their tendency to do so is so strong that complex formation proceeds completely.

Then the mole fraction z of complexes is equal to the minimum of the initial mole fractions

of saturated lipids, s0, and cholesterol, c0, which occur before complex formation begins.

The phenomenological free energy of the system at a given temperature T can be written

in units of kBT as follows:

f(s, u, c, z) ≡ F

kBT ·N
= s ln s+ u lnu+ c ln c+ z ln z + Jzu, (2.1)

The first four terms represent the entropy of mixing of the four components of the mixture;

this is nearly always the starting point of any phenomenological free energy. The term Jzu

represents the pairwise repulsion between condensed complexes and unsaturated lipids. The

fact that complex formation proceeds to completion implies that

z = min(s0, c0) (2.2)

s ln s+ c ln c+ z ln z = |c0 − s0| ln |c0 − s0|+ min(c0, s0) ln [min(c0, s0)] (2.3)

The scaled free energy f is now defined in terms of the initial mole fractions u0 and s0, since

c0 = 1− u0 − s0. The resulting phase diagram is shown for J = 4 in Figure 2.1, taken from

[91]. McConnell’s theory can therefore explain the topology of the phase diagram deter-

mined by Veatch et al. without resorting to the arbitrary use of higher-order interactions,

but rather by assuming that cholesterol and saturated lipids form complexes which inter-

act with unsaturated lipids via a repulsive binary interaction. McConnell and coworkers

[119, 68] had previously used the concept of condensed complexes to explain certain fea-

tures of the phase diagram of phospholipid-cholesterol monolayers. Although the concept of

condensed complexes has proven useful in understanding how a closed-loop miscibility gap

might arise from pairwise interactions, the evidence from molecular dynamics simulations

for the existence of these complexes is mixed [107, 158, 108]. Furthermore, the explana-

tion of the closed-loop miscibility gap based on the concept of condensed complexes hinges
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transduction pathways.4 Yet, it should be pointed out that,

alternatively, such communication could also be provided

directly through transmembrane proteins.17

The notorious difficulties to probe rafts in vivo have intensified

research in model membranes where macroscopic separation into

two liquid phases, liquid-disordered (Ld) and liquid-ordered

(Lo), is observed for appropriate ternary lipid mixtures.18 The

putative connection of model systems to the raft concept derives

from similarities in compositions of raft extracts and Lo phases

(and, conversely, of non-raft extracts and Ld phases). Macro-

scopic fluid–fluid phase coexistence in ternary model membranes

requires cholesterol, a lipid species with high melting temperature

(Tm), and one with low melting temperature. The high-Tm lipids

have saturated hydrocarbon tails that sterically interact favor-

ably with the rigid backbone of cholesterol when in an extended

conformation, i.e. with few or no gauche conformers. Such

favorable interaction is not possible with the unsaturated or

branched hydrocarbon tails of low-Tm lipids. The existence of

two energetically favorable states, one for cholesterol in contact

with highly ordered saturated lipid chains, and the other for

a disordered mixture of unsaturated and saturated chains,

provides the basis for the tendency to phase separate.

Perhaps the most simple theoretical model of fluid–fluid phase

coexistence in ternary model membranes has been suggested by

McConnell and coworkers.19,20 The model is based on a single

order parameter and is reminiscent of the random mixing

approximation of regular solution theory. However, it goes

beyond that by introducing the formation of condensed

complexes (with equilibrium constantK) between cholesterol and

the high-Tm lipid species (referred to by McConnell as ‘‘reactive’’

and indexed R). The complexes are treated as a separate species

that is immiscible with the remaining low-Tm lipid species (the

latter referred to as ‘‘unreactive’’ and indexed U). The model in

refs. 19 and 20 involves two parameters; first, a measure of non-

ideality between the unreactive lipid and the complexes and,

second, the equilibrium constant K. Both may be chosen so as to

fit experimental findings; yet, we note that the qualitative struc-

ture of the phase diagram is preserved even in the limit K / N
where complex formation is complete. In this case, the free

energy per lipid f (measured in units of the thermal energy kBT)

of the ternary mixture is remarkably simple,

f/kBT¼fU lnfU+ |fR"fC| ln|fR"fC|+fA lnfA+cfUfA (1)

where fR, fU, and fC are the mole fractions of the reactive lipid,

unreactive lipid, and cholesterol, respectively. The mole fraction

of the 1:1 complex between cholesterol and the reactive lipid is

fA ¼ fR for fC > fR and fA ¼ fC for fR > fC. The only

parameter in eqn 1 is the (dimensionless) non-ideality c of the

mixture between complexes and unreactive lipid. Fig. 1 shows

a phase diagram corresponding to eqn 1 with c ¼ 4. The most

notable feature ofMcConnell’s model (with eqn 1 referring to the

special case K / N) is the presence of a closed-loop immisci-

bility region in the phase diagram. That is, only ternary but no

binary mixtures are unstable, which, from an energetic point of

view, is only possible in the presence of effective three-body (or,

more generally, multibody) interactions. Indeed the interaction

term #fUfA in eqn 1 is effectively a three-body interaction term

because the complex (present with mole fraction fA) consists of

both cholesterol and the reactive lipid. Also other interaction

models of cholesterol-containing lipid membranes, such as the

umbrella model,21 point at the necessity to include multibody

interactions.22 Putzel and Schick23 have recently suggested

a phenomenological model based on two order parameters, chain

order and composition. Without the need to postulate the

formation of condensed complexes, the model predicts the

closed-loop structure of the phase diagram and also includes

phase transitions to the gel state. In addition, the use of two order

parameters mimics the presence of three-body interactions

without having to explicitly introduce them.

The closed-loop property of the theoretically predicted fluid–

fluid coexistence region and the orientation of the tie lines in

Fig. 1 agree with experimental observations; see for example the

ternary system diphytanoylphosphatidylcholine (DiPhyPC),

dipalmitoylphosphatidylcholine (DPPC) and cholesterol.24 We

note that for any fixed fraction fC/fR (fixed number of

complexes) the membrane can, approximately, be described as

a pseudo-binary mixture. This provides some justification to

model these ternary systems as binary mixtures; see below. Note

finally that most experimentally determined phase diagrams are

more complex as they also contain gel-state phase regions.25

Phase separation into Lo and Ld domains proceeds usually in

registration across a symmetric model membrane. That is, Lo

domains in one leaf face Lo domains on the other leaf, and an

analogous statement applies for Ld domains. This complete

phase registration was first observed by Korlach et al.26 using

fluorescence microscopy on giant unilamellar vesicles (GUVs)

composed of dilauroylphosphatidylcholine (DLPC), DPPC, and

cholesterol. Complete domain registration appears to be

a general feature of unsupported symmetric membranes.27–29 The

observed trans-monolayer registration of domains clearly implies

the existence of some composition-dependent coupling mecha-

nism between the two monolayer leaves.

Fig. 1 A phase diagram of the ternary mixture: reactive lipid (with mole

fraction fR), unreactive lipid (fU), and cholesterol (fC), according to eqn

1 with c ¼ 4. This model is based on the concept of complex formation

between the reactive lipid and cholesterol as introduced by McConnell.9

Eqn 1, which applies to the limit of complete complex formation,

preserves the qualitative feature of a closed-loop binodal. The closed

solid line denotes the spinodal; upper and lower critical points are marked

by open circles. Dotted lines represent the locations of the upper and

lower critical points for varying c. The phase diagram is symmetric with

respect to the dashed line where fC/fR ¼ 1. Phase separation requires

c.
ffiffiffi
2

p
þ 3

2 ¼ 2:91.
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Figure 2.1: Phase diagram calculated from McConnell’s condensed complex theory [93],
with J = 4. Figure taken from [91]. The mole fractions φC , φU , and φR, are respectively
those of cholesterol, unsaturated lipids, and saturated “reactive” lipids. The numerous
parallel lines are tie-lines. The dotted lines show the evolution of the two critical points as
the parameter J is varied.

on the repulsion between the complexes and the unsaturated lipids, which remains unex-

plained. It is thus desirable to have a phenomenological model for the DPPC/diphytanoyl

PC/cholesterol mixture in which the interactions are based on known facts concerning the

molecular components. In particular, it is clear that a theory concerning the coexistence

of the liquid-ordered and liquid-disordered phases should make some reference to the con-

figurational order of the lipids, rather than using fixed interaction constants such as J in

equation 2.1. Our phenomenological model [117] was motivated by this observation, and is

built upon the following assumptions, generally supported by our experimental knowledge

of lipid mixtures:

1. The interactions between molecules will in general depend on their internal degrees

of freedom. In particular we assume that the interactions involving saturated lipids

will depend on an order parameter, δ, representing the extent of orientational order
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in the acyl chains (tails) of the saturated lipids. The free energy will depend on δ as

well as on the mole fractions u, s, and c. For other theories of lipid mixtures including

similar order parameters see [72, 71, 1].

2. Saturated lipids that are highly ordered pack closely together. This packing is fa-

vorable for the Van der Waals interaction, but is disrupted by unsaturated (or more

generally, low melting temperature) lipids, which have disordered tails. We therefore

choose the repulsion between saturated and unsaturated (low melting temperature)

lipids to be proportional to δ.

3. In a fluid bilayer, cholesterol increases the extent of order in the tails of saturated

lipids. This “condensing effect” of cholesterol has been known in the context of lipid

monolayers since 1925 [76] and is also well-documented in fluid lipid bilayers [126].

These three conceptual ingredients are implemented in the following expression for the free

energy per unit molecule, describing liquid phases in a ternary mixture of saturated lipids,

low-melting-temperature lipids such as diphytanoyl PC (which, in an abuse of terminology,

we refer to as an unsaturated lipid), and cholesterol

fliq(c, s, δ) = c ln c+ s ln s+ u lnu

+ Jsss
2
[
k1(δ − 1)2 + (δ − 1)4

]
+ Jususδ − Jcscs(δ − k2δ

2), (2.4)

where u = 1−s−c. The first line is simply the entropy of mixing. The second line represents

the δ-dependent interactions among the saturated lipids. The normalization of the order

parameter δ is chosen such that δ = 1 for a system of pure saturated lipids. The interactions

of the saturated lipids with the other components of the mixture are described by the terms

in the third line. The repulsion between saturated and unsaturated lipids is proportional to

the extent of order δ of the saturated lipids. The interaction between saturated lipids and

cholesterol is also proportional to δ, but is attractive, so that the presence of cholesterol

favors higher order in the saturated lipids. The term in δ2 is necessary to ensure that the
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free energy remains finite in the limit where s vanishes, in which case f would otherwise

become unbounded from below as a function of δ.

The free energy function 2.4 depends not only on the mole fractions of the components

of the mixture, but also on an internal order parameter δ of the saturated lipids, which is

neither conserved in the course of experiments (as is the average composition) nor controlled

experimentally. Therefore the value of δ occurring in equilibrium will be such that f is

minimized as a function of δ. This determines the equilibrium value δeq as a function of the

mole fractions s and c: [
∂f(s, c, δ)

∂δ

]
δ=δeq

= 0 (2.5)

The equation above reduces fliq to a function of the mole fractions only, so that the phase

diagram can be calculated as described in Appendix B. A phase diagram derived from

the free energy function 2.4 is shown in Figure 2.2. This phenomenological phase diagram

Because one composition remains undetermined, there can
be a region of concentrations over which two-phase coexis-
tence occurs. We solve these equations numerically.
A phase diagram that results from this theory is shown in

Fig. 1. It reproduces the kind of phase diagram found in the
diPhyPC/DPPC/cholesterol system. We have indicated
values of the order parameter at several concentrations. As
expected, it is large in the regions in which the concentration
of the saturated lipid is large, and tends to increase with the
concentration of cholesterol due to its ordering effect. Fur-
ther, because the cholesterol prefers the saturated lipid, there
is more of it in the saturated-lipid rich lo phase than in the
unsaturated-lipid rich ld phase. Hence, the tie lines con-
necting coexisting phases slope upward, a result that is in
accord with many (9,27,28) experimental observations.
It may be helpful to consider how the presence of the

order-parameter dependent terms in the free energy
f̃liqðT; c; s; dÞ affects the form of the Helmholtz free energy
fliqðT; c; sÞ[ f̃liqðT; c; s; dliqðT; c; sÞÞ To do this, we ignore for
clarity the quartic term in d # 1 in Eq. 5 so that the deter-
mination of the value of the order parameter that minimizes
the free energy is immediate. We obtain

dliqðT; c; sÞ ¼ 11
Jcscsð1# 2k2Þ # Jusus

2Jssk1s
2 1 2Jcsk2cs

: (14)

This shows that the addition of cholesterol to the system of
pure saturated lipid does tend to increase the magnitude of the
order parameter due to the attractive interaction between
cholesterol and saturated lipid Jcscs. We also note that while
dliq can increase without limit as the pure unsaturated system
is approached, the physical quantity is sdliq because there are
no ordered chains without saturated lipid, and this quantity is
well behaved everywhere. Substituting this result into the
free energy of Eq. 5, one finds that the important interaction
Jususdliq contains

JusJcsð1# 2k2Þ
2Jssk1s1 2Jcsk2c

cus: (15)

This is a term that increases the free energy and is propor-
tional to the product of the three concentrations. Hence, to
lower its free energy, the system tends to avoid a one-phase
region in which all components are present equally, and does
so by undergoing phase separation. That this term is propor-
tional to the product of the interactions between saturated
lipid and the other two components, JusJcs, is a manifestation
of the basic idea that the key ingredient to the phase behavior
is the combination of the ordering interaction between
cholesterol and saturated lipid, and the repulsion between
unsaturated lipid and ordered saturated lipid. It is not difficult
to see analytically that this coexistence does not extend to the
binary systems for the parameters chosen, but the argument is
not sufficiently illuminating to warrant its presentation.
We now consider the system to be at a temperature at

which it could exhibit a gel phase in addition to liquid phases.
For the free energy of the gel phase, we write

f̃gelðT; c; s; dÞ ¼ f̃mix 1 f̃chain;gel 1 f̃int;gel;

f̃mix ¼ c ln c1 s ln s1 u ln u;

f̃chain;gel ¼ Jsss
2½k1ðd# 2Þ2 1 ðd# 2Þ4 1 k3&;

f̃int;gel ¼ J9ususd1 J9cscsd: (16)

We note the following. The form of f̃chain;gel has been taken to
be of essentially the same form as f̃chain;liq for simplicity. We
have set the single minimum of the free energy in the gel
phase to occur at d ¼ 2 when the system consists only of the
saturated lipid. In such a system the free energy of the gel
phase exceeds that of the liquid phase by k3Jss; hence, k3 is
proportional to T – T*, with T* the liquid-gel transition
temperature in the pure system. By changing k3 from positive
to negative values, we induce a liquid-to-gel transition in our
system. The interaction strengths J9us and J9cs are positive so
that the addition of cholesterol, as well as unsaturated lipid,
reduces the order of the saturated lipid in the gel phase (11).
The value of the order parameter, dgel(T, c, s), is determined
by minimization of the above free energy, and the Helmholtz
free energy in this phase is

fgelðT; c; sÞ ¼ f̃gelðT; c; s; dgelðT; c; sÞÞ: (17)

The free energy of the entire system is now

f ðT; c; sÞ ¼ min½ fliqðT; c; sÞ; fgelðT; c; sÞ&; (18)

and phase coexistence is again found by the conditions of the
equality of two chemical potentials and of the surface tension
as in Eqs. 8–13 but with fliq(T, c, s) replaced by f(T, c, s)
above. A phase diagram that results when the temperature is
below that of the gel transition of the saturated lipid is shown
in Fig. 2. Values of the order parameter at various concen-
trations are shown. The phase diagram shows all the features
of most of those observed experimentally. In particular, there

FIGURE 1 Phase diagram of the ternary system at a temperature above
the main chain transition of the saturated lipid. Values of the order parameter

are shown at four composition marked by dots. The values of the parameters

are as follows: Jss ¼ 1.0, k1 ¼ 1.0, Jus ¼ 1.8, Jcs ¼ 2.4, and k2 ¼ 0.21.

Phenomenological Model 4759

Biophysical Journal 95(10) 4756–4762

Figure 2.2: Phase diagram calculated from the free energy 2.4, with parameters Jss = 1.0,
k1 = 1.0, Jus = 1.8, Jcs = 2.4, and k2 = 0.21. Values of the order parameter δ are shown at
points marked by dots. The closely spaced lines are tie-lines connecting coexisting phases.

shows the result of the basic assumptions listed above. The repulsion between saturated and
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unsaturated lipids depends on the order parameter δ, which in the absence of cholesterol

is not great enough to trigger phase-separation in the binary lipid mixture. However, the

addition of cholesterol orders the saturated lipids, increasing this repulsive interaction. At

sufficiently high levels of cholesterol, this repulsion is strong enough to cause phase sepa-

ration between a phase poor in saturated lipids and cholesterol and a phase rich in these

components. Furthermore, the saturated lipids in the saturated-rich phase are highly or-

dered, as can be seen from the values of δ shown at compositions marked by dots in the

figure.

The role of the δ-dependent interactions can be made clear if one makes the approxima-

tion that δ ≈ 1, so that the term in (δ − 1)4 in equation 2.4 can be ignored, allowing us to

solve for δeq explicitly. The resulting free energy f(s, c, δeq(s, c)) contains the term

JusJcs(1− 2k2)
2Jssk1s+ 2Jcsk2c

ucs, (2.6)

representing a ternary interaction proportional to Jus, the repulsion between saturated and

unsaturated lipids, and to Jcs, the tendency of cholesterol to order the saturated lipids.

The term given in Equation (2.6) neatly encapsulates the conceptual ingredients of this

phenomenological theory. It also shows that the ternary interactions suggested by the

closed-loop miscibility gap of the DPPC/DiphyPC/cholesterol phase diagram are easily

understood on the basis of intermolecular interactions depending on the internal degrees of

freedom of molecules. McConnell’s model involving condensed complexes can be viewed in

a similar light. His free energy depends not only on the initial mole fractions u0, s0, and c0,

but also on a parameter that is not controlled externally, namely the fraction of saturated

lipids that undergo complexation with cholesterol. This fraction is clearly increased by

the presence of cholesterol; moreover, the posited repulsion between unsaturated lipids and

complexes amounts to an s-u repulsion which depends on this fraction. In a final analysis,

therefore, both phenomenological models described here provide intuitive justifications for

including a ternary interaction term in the free energy when it is written as a function of

mole fractions only.

In Appendix D we give another phenomenological theory of a ternary mixture of sat-

urated lipids, unsaturated (low melting temperature) lipids, and cholesterol. The theory
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has essentially the same content as the one given above, but is simpler and easier to use in

calculations.

We have applied the phenomenological model described above to investigate the changes

in phase behavior that occur in ternary lipid-cholesterol mixtures when some fraction of the

saturated lipids is chemically cross-linked into complexes of p molecules each [118]. This

scenario is motivated by experiments on ternary model membranes that showed that chem-

ical cross-linking of lipids can trigger liquid-liquid phase separation in previously uniform

mixtures [54, 84], and by the important role played by cross-linking of proteins in lipid raft-

mediated signaling events [132]. The phenomenological free energy of equation (2.4) is easily

extended to include complexes of p saturated lipids each. It is convenient to keep track of

the quantity of these complexes by defining z to be the mole fraction of individual satu-

rated lipids occurring in complexes, and s to be the the mole fraction of individual saturated

lipids not occurring in complexes. Our phenomenological free energy for the four-component

system including complexes is simply

f =
z

p
ln z + fliq(s+ z, c, δ), (2.7)

where fliq is the free energy of the ternary mixture given in equation (2.4). The first term

is the entropy of mixing of the saturated lipids occurring in complexes. It is reduced by

a factor of p as in the Flory-Huggins theory of polymer mixtures [22] to account for the

fact that the positions of lipids in a given complex are not independent of each other. The

second term is the free energy of the ternary system of saturated lipids, unsaturated lipids,

and cholesterol. Its dependence on s+ z, the mole fraction of saturated lipids regardless of

whether they are in complexes, reflects our assumption that lipids in complexes have the

same intermolecular interactions as those not in complexes. This assumption amounts to

a further mean-field approximation, since in reality two lipids that are cross-linked close

together always interact with each other, regardless of the average composition of the mix-

ture. Therefore the dependence of f on s+ z should be reasonable if cross-linked lipids are

kept far apart compared to the correlation length(s) of the mixture.

A composition of the quaternary mixture of saturated and unsaturated lipids, cholesterol,

and complexes of saturated lipids is defined in terms of three independent mole fractions.
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The phase diagram of this mixture should therefore be visualized in a three-dimensional

tetrahedron or simplex instead of the Gibbs triangle used for ternary systems. Each vertex

of the tetrahedron represents a pure phase of one of the components, and the composition

(u, s, c, z) is represented by the center of mass of four points with masses u, s, c, and z,

located at the respective vertices. The equations of phase coexistence can be solved using

methods similar to those described in Appendix B, and the resulting tie-lines displayed in

the interior of the “Gibbs tetrahedron.” The region of two-phase coexistence is a three-

dimensional solid, making it difficult to portray. The left panel of Figure 2.3 shows, for

p = 5, some of the tie-lines of the quaternary mixture, namely those for which either the

liquid-order or liquid-disordered phases has z = 0.05. These tie-lines show the boundary of

the two-phase region within the plane z = 0.05. This boundary is labeled z = 0.05 in the

right panel of Figure 2.3, which shows a Gibbs triangle in which one corner represents all

saturated lipids, regardless of whether they are in complexes or not. Also shown are the

boundaries for z = 0.03 and z = 0, which is simply the two-phase region of the original

ternary system, shown in Figure 2.2.

The right panel of Figure 2.3 shows that cross-linking even a small fraction of the satu-

rated lipids has a significant effect on the phase-behavior of the ternary mixture of saturated

lipids, unsaturated lipids, and cholesterol. A bilayer with composition lying inside the solid

curve (z = 0.05) but outside of the dotted curve (z = 0) would be uniform without any

cross-linking, but would phase-separate upon cross-linking enough saturated lipids so that

the mole-percent of cross-linked saturated lipids is z = 0.05. Such cross-linking-triggered

liquid-liquid phase separation has been observed experimentally [54] in ternary model mem-

branes in which the saturated ganglioside lipid GM1 is cross-linked into pentamers (p = 5)

using cholera toxin. Interestingly, according to Figure 2.3 our model predicts that the effect

of cross-linking should be much greater for initial compositions in the liquid-disordered,

rather than liquid-ordered, phase. If we modify the phenomenological model so that the

unsaturated lipids, rather than the saturated ones, are cross-linked, then the opposite case

arises: the tendency to trigger phase-separation is much more significant in the unsaturated-

poor liquid-ordered phase [118]. Phase separation triggered by cross-linking of unsaturated

lipids has also been observed [84].
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Figure 2.3: Partial phase diagrams calculated from equation (2.7). Left: Partial phase
diagram showing tie-lines in which either the liquid-ordered or the liquid-disordered phase
contains 5 percent complexed saturated lipids. Right: Boundaries of the two-phase region
with various fixed amounts of cross-linked saturated lipids (z). The gray region represents
compositions where s+ z ≤ 0.05.

In general, phase separation is driven by intermolecular interactions and opposed by

entropy of mixing. Any membrane component that, by nature of its interactions, tends to

promote phase separation, will be capable to some degree of triggering phase separation

when it is cross-linked. This applies not only to the saturated and unsaturated lipids that

were cross-linked in the experiments discussed immediately above, but also to any proteins

that might partition preferentially into either the liquid-ordered or -disordered phases. The

mechanism of reduction of mixing entropy described above is therefore of biological interest

in the context of cell signaling processes known to involve lipid rafts, such as the immune

response of T cells [132].
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2.2 Microscopic Models of Lipid Bilayers

Whereas phenomenological modeling can serve as a guide to studying the thermodynamics

of a complex system such as a mixed lipid/cholesterol bilayer, it can not reveal the connec-

tion between the known fundamental interactions and the macroscopic phase behavior of

interest. For this purpose we must have a description of the system at a molecular level.

The most common approaches to modeling lipid bilayers at this level have been Monte

Carlo (MC) [74] and molecular dynamics (MD) [46] simulations. Atomistic molecular dy-

namics, in which Newton’s equations of motion are solved in suitably parameterized inter-

atomic force fields, has been a popular approach to studying the structure and dynamics of

lipid/cholesterol membranes on the nanometer scale [107, 109, 11]. Unfortunately, atomistic

MD simulations are computationally intensive and thus are only able to study length scales

of tens of nanometers and time scales of fractions of a microsecond [99], making macro-

scopic phase behavior and other large-scale phenomena inaccessible. This limitation has led

to the development of so-called coarse-grained models of lipid membranes [96, 149], includ-

ing lipid/cholesterol mixed membranes [99, 123]. A major success has been the simulation

by Risselada and Marrink [123] of liquid-liquid immiscibility in a coarse-grained model of a

ternary mixed membrane containing saturated lipids, unsaturated lipids, and cholesterol.

A different approach to modeling lipid membranes at the molecular level has been to

construct microscopic models of the interactions between lipids which can be solved either

analytically or numerically to obtain thermodynamic quantities. These models are usually

but not always [100] developed and solved under a mean-field approximation. They offer

two important advantages over more detailed simulation methods. First, their simplicity

highlights only the most important interactions governing the behavior of lipid membranes,

leaving out molecular details which are irrelevant to the phenomena of interest. Second,

using these methods it is a simple matter to extract thermodynamic quantities such as the

free energy difference between two states; although this is possible in molecular dynamics

[46] and Monte Carlo [74] simulations, it is in many cases prohibitively difficult, requiring

simulations to be repeated many times.

Molecular mean-field theories describe intermolecular interactions by assuming that a
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given molecule experiences an average potential given by a mean field representing its sur-

roundings. The value of this field is determined from the probability distribution of the

configurations of the “central molecule” itself in a self-consistent manner. A number of

such models have been proposed to describe various aspects of lipid bilayers. We merely

list them here; their influence on the model of Elliott et al. [35, 36] will be seen in the next

section. Of particular note is the pioneering work of Marčelja [87, 88], who adapted the

Maier-Saupe theory of the nematic state of liquid crystals [24] to describe the gel-liquid

phase transition in bilayers of saturated lipids. While Marčelja’s model thus describes in

a mean-field manner the interactions giving rise to the gel-liquid transition, another model

developed by Ben-Shaul and collaborators [136, 41, 42] describes in a detailed manner the

dense packing of lipid tails in the interior of the bilayer via an incompressibility constraint,

as well as including a realistic treatment of the configurations of the tails, based on Flory’s

Rotational Isomeric State Model [45]. Other molecular mean-field models of lipid bilayers

were developed by Gruen [52], by Dill and Stigter [29], and by Leermakers and Scheutjens

[79]. This type of model has been brought to bear on an impressive array of problems re-

lated to lipid membranes and other aggregates, including lipid-protein interactions [42, 31],

curvature elasticity of membranes [137], the effects of cholesterol [34, 78], mixtures of lipids

with different chain lengths [85], non-bilayer morphologies [97, 82], and membrane fusion

[77].

2.3 The Model of Elliott, Szleifer, and Schick

In this section we describe the main features of the molecular mean-field theory developed

by Elliott et al. to describe lipid bilayers composed of saturated lipids, unsaturated lipids,

and cholesterol. For more details on this model, the reader is directed to [34, 35, 36]. The

theory combines features of two earlier models. As in the theory of Ben-Shaul [136], it treats

the configurations of the lipid tails realistically using the Rotational Isomeric State Model

[45], and describes the packing of these tails in the bilayer interior using an incompressibility

constraint. It also displays a phase transition between gel and liquid phases driven by a

bond orientation-dependent intermolecular interaction as in the work of Marčelja [87, 88].

Most notably, however, the theory of Elliott et al. displays phase separation between phases
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with properties similar to those of the liquid-ordered and liquid-disordered phases observed

in ternary model membranes [36]. Therein lies our primary interest in this model, since we

have used it to calculate the magnitude of the interaction which couples the states of the

two leaflets in liquid-liquid phase separated membranes; see section 3.7.

The microscopic model of Elliott et al. describes a bilayer composed of saturated lipids,

unsaturated lipids, and cholesterol. More specifically, it describes the interactions among

the acyl chains of the lipids as well as the hydrophobic part of the cholesterol molecule.

For each of these molecular species, a large set of molecular configurations is enumerated

based on the realistic Rotational Isomeric State Model [45, 34]. A given “configuration”

includes the orientation of the whole molecule as well as as the trans or gauche state of

its carbon-carbon bonds; the internal energy difference between these states is taken into

account explicitly. The model accounts for the interactions between molecules in a mean-

field way. The probability of a given chain configuration is determined by its coupling to

two mean fields: the lateral pressure field π(z) and the field ξ(z), which gives the density

of carbon-carbon bonds, weighted by the extent to which these bonds are aligned with the

bilayer normal. We now describe the physical role of each of these fields.

The field π(z) gives the lateral pressure at a depth z into the bilayer, and serves to

enforce the constraint of incompressibility of the bilayer interior, as in the work of Ben-

Shaul and collaborators [136]. The incompressibility of the bilayer interior is a simple result

of two kinds of interactions which would be difficult to account for individually: the short-

range steric repulsions between molecules, which prevent them from overlapping, and the

weak but long-range attractive Van der Waals interactions. Together these interactions

cause the molecules forming the bilayer interior to condense into a densely packed liquid

having a constant, uniform, density. The constraint of constant density is imposed via

a Lagrange multiplier, which is precisely the lateral pressure profile π(z). There is some

evidence from experiment to justify the assumption that the bilayer interior has constant

density, and is therefore incompressible, under experimentally relevant conditions: Ebel et

al. [32] measured the pressure dependence of the gel-liquid transition temperature in DPPC

lipid bilayer vesicles, and found that that it was shifted by less than a degree Celsius as

the hydrostatic pressure was increased by a factor of roughly 40. A significant change in
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volume of the bilayer during the gel-liquid transition would have coupled to the hydrostatic

pressure, leading to a large pressure dependence of the gel-liquid transition temperature

[58]. Thus, although the lipids are more densely packed in the gel phase than in the liquid

phase, and therefore occupy less area, they also form a thicker bilayer; these effects result

in nearly the same volume per molecule in both phases.

The field ξ(z) measures the “density of bond order” at a given depth z into the bilayer.

It counts the number of carbon-carbon bonds at that location, weighting them by the extent

to which they are aligned with the bilayer normal. Molecular configurations experience an

interaction proportional to this field: the greater ξ(z) is, the more it tends to align the bonds

of these configurations along the bilayer normal. It is this orientation-dependent interaction

which leads to the gel-liquid transition, as in the work of Marčelja [87, 88].

Note that in the model of Elliott et al., only the configurations of the hydrophobic com-

ponents of molecules are treated in detail. The interactions between the lipid head groups,

or between the lipids and the solvent, are treated phenomenologically using an effective

surface tension term proportional to the area of the bilayer. This takes into account the

effective attraction between head groups due to the fact that if these are widely separated,

the hydrophobic interior of the bilayer will be exposed to the solvent. Thus the effective

“surface tension” used by Elliott et al. [34] is approximately equal to the surface tension

between oil and water.

The complete Helmholtz free energy per molecule in the model of Elliott et al. is sum-

marized as follows:

f ≡ βF

N
= fideal Ideal gas contribution

+ finternal Internal energy and entropy of configurations

+ fbond Attractive bond interaction

+ fLagrange Lagrange multiplier for incompressibility

+ fsurface Surface interaction (2.8)

This free energy defines a functional of the probability distribution of molecular configura-

tions. The equilibrium distribution is determined by minimizing f . By minimizing the free
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energy with respect to areal density as well, we may calculate the Helmholtz free energy of

the tensionless state of the mixed bilayer as a function of the mole fractions of each of the

constituents of the mixture. This in turn produces a phase diagram as explained in Ap-

pendix B. A phase diagram calculated for T = 290 K by Uline et al. [141] from the model of

Elliott, Szleifer, and Schick is shown in Figure 3.10. It shows a region of saturated-lipid-rich

gel phase as well as coexistence between two liquid phases. In section 3.7 we use the model

of Elliott et al. to calculate the magnitude of the interaction that couples the states of the

two leaflets in phase-separated bilayers. This interleaflet coupling is the subject of the next

chapter.
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Chapter 3

THE INTERLEAFLET COUPLING

The phenomenological models described in the previous chapter miss an important as-

pect of the cell plasma membrane: its compositional asymmetry [26, 142, 70]. Whereas

the outer (extracellular) leaflet of the plasma membrane is rich in lipids with PC head

groups as well as the saturated sphingolipids believed to be involved in the formation of

lipid rafts, the inner leaflet is rich in lipids with unsaturated tails and contains essentially

all of the lipids with charged head groups. This asymmetry is facilitated by the slow rate

of interleaflet translocation or “flip-flop” of lipids [127], but ultimately must be actively

maintained by the cell, which uses specialized proteins known as “flippases,” “floppases,”

and “scrambleases” [27] to translocate certain lipids across the plasma membrane. Since

this process costs energy, the lipid asymmetry of the plasma membrane is evidently of im-

portance to cell function. This asymmetry raises an important question regarding the lipid

raft hypothesis [26]: since the compositions of the inner and outer leaflets are such that rafts

are thought to reside only in the outer leaflet, how does a lipid raft function as a platform

for transmembrane signaling? A related question concerns the phenomenon of liquid-liquid

phase separation in model membranes containing cholesterol: are liquid domains entities

that exist within a single leaflet of the bilayer, or are the leaflets coupled in some way? In

Section 3.1 we discuss experimental evidence of an interaction that couples the states of the

two leaflets of a bilayer undergoing liquid-liquid phase separation. In Section 3.2 we review

phenomenological models of the phase behavior of bilayers with coupled leaflets, including

our own [116]. The interleaflet coupling is the free energy penalty per unit area of “mis-

match” in which the apposing leaflets have different compositions characteristic of the two

liquid phases. We give two thermodynamic definitions of the interleaflet coupling, which we

call γ in this work: In Section 3.3 it is defined in the canonical ensemble of fixed particle

numbers, while in Section 3.4 it is defined in the grand canonical ensemble, that is, under



31

conditions of fixed chemical potentials. This discussion is followed by a review of several

mechanisms that have been proposed to explain the origin of the interleaflet coupling. In

Section 3.6 we give an analysis of domain boundary fluctuations in coupled phase-separated

lipid bilayers that clarifies the interpretation of the interleaflet coupling γ as well as the

way in which this quantity should be extracted from coarse-grained molecular dynamics

simulations such as those of Risselada and Marrink [123]. Finally we describe our molecular

mean-field calculation of the interleaflet coupling in a phase-separated ternary mixture of

saturated lipids, unsaturated lipids, and cholesterol, using the model developed by Elliott

et al. [36].

3.1 Interleaflet Coupling in Liquid-Liquid Phase-Separated Vesicles

The lipid asymmetry of the cell plasma membrane raises important questions related to the

lipid raft hypothesis [26] and the related phenomenon of liquid-liquid phase separation in

model lipid bilayers containing cholesterol [18]. Artificial model membranes with compo-

sitions meant to reflect that of the extracellular monolayer of the plasma membrane have

been found to phase-separate into liquid-ordered and liquid-disordered phases [28]. In con-

trast, model membranes with compositions mimicking that of the cytoplasmic leaflet of the

plasma membrane do not show such liquid-liquid phase separation [156]. If the molecular

interactions responsible for the existence of rafts are the same as those driving liquid-liquid

phase separation in model systems, it follows that in order for lipid rafts to regulate or

influence transmembrane signaling processes [132], a lipid raft in the extracellular leaflet

of the plasma membrane must somehow induce a change in the cytoplasmic leaflet. This

coupling could be performed by a transmembrane protein that partitions preferentially into

the raft; however, experiments on protein-free model membranes exhibiting liquid-liquid

phase separation indicate a strong inter-leaflet coupling which could provide a mechanism

for raft-based transmembrane signaling. The earliest evidence for such a coupling was the

fact that liquid domains in phase-separated vesicles [9, 145] were seen to be in registry in

both leaflets [17]. In the absence of any inter-leaflet coupling, phase separation would occur

independently in each leaflet, whereas a sufficiently weak coupling might still allow fluctu-

ations out of domain registry visible on the micron scale. The fact that such “overhang”



32

fluctuations are never observed in symmetric model membranes undergoing liquid-liquid

phase separation suggested a strong coupling between the states of the two leaflets [17]. We

show in section 3.6 that the spatial extent of such fluctuations will be below optical resolu-

tion even with a very small interleaflet coupling. Recently, experimentalists have obtained

direct evidence of inter-leaflet coupling using supported [69, 49, 155] and unsupported [18]

asymmetric membranes. Collins and Keller [18] have shown that this coupling has important

effects on the phase behavior of model membranes with asymmetric composition; whether

these are uniform or display liquid-liquid phase coexistence depends on the compositions of

both of the leaflets.

3.2 Phenomenological Modeling

The experiment of Collins and Keller [18] showed that the interleaflet coupling has important

effects on the liquid-liquid phase behavior of lipid bilayers with asymmetric compositions. In

this section we discuss theoretical and phenomenological treatments of the phase behavior

of coupled bilayers, including our own [116].

The phase behavior of a bilayer can be modeled phenomenologically using a free energy

depending jointly on two order parameters, one for each leaflet. Terms in the free energy

involving products of these order parameters couple the states of the leaflets. Several stud-

ies have used this approach to model the effect of interleaflet coupling on the gel-liquid

transition [159, 61]. Here we are interested in the coupling between compositional order

parameters in the two leaflets of a mixed bilayer. Several authors have modeled the phase

behavior of two leaves whose compositional order parameters are coupled indirectly, via

composition-dependent spontaneous curvatures [80, 138, 86]. Hansen et al. [56] were the

first to consider a direct intermolecular coupling between the compositional degrees of free-

dom of the two leaflets. However, they were interested in various spatially modulated phases

rather than in determining the miscibility phase behavior of asymmetric bilayers, and their

model assumed equal average compositions of the two leaflets. Allender and Schick [1] pro-

posed a model in which two leaflets are separately capable of undergoing phase separation,

generally at different temperatures, and considered the phase behavior of this system when

the coupling between the leaflets is small. They predicted, among other things, that more
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than two liquid phases could coexist in an asymmetric coupled bilayer. We have calculated

[116] the miscibility phase diagram of a closely related model, without the assumption of

small coupling. This work is the subject of the remainder of this section. Wagner et al. [153]

independently published a very similar analysis.

The compositional state of each leaflet of the bilayer is represented by a single order

parameter: x for the inner leaflet and y for the outer one. We assume that these order

parameters are linear combinations of mole fractions of molecules in their respective leaflets,

and that the composition of the liquid-ordered phase corresponds to a positive value of the

order parameter, whereas the composition of the liquid-disordered phase corresponds to a

negative value of the order parameter. We consider the following phenomenological free

energy per molecule for the coupled leaflets (see also [18]):

f(T, x, y) = ci(T )x2 + x4

+ co(T )y2 + y4

− αxy (3.1)

The first two lines represent the interactions between molecules within each of the leaflets.

The sign of the coefficient ci(T ) determines whether or not phase separation will occur in

the inner leaflet in the absence of any coupling to the outer one, and similarly for co(T ) in

the outer leaflet. The last term in (3.1) is an energetic coupling between the compositional

states of the inner and outer leaflets. If α > 0, then it is energetically favorable for the two

leaflets to have similar compositions, as is the case in model lipid membranes capable of

undergoing liquid-liquid phase separation.

In the following, it will be convenient to express both the compositional order param-

eters and the coupling α in dimensionless form. Phase diagrams will be given with order

parameters x and y expressed in terms of characteristic values

X̂ = (|ci(T )|/2)1/2

Ŷ = (|co(T )|/2)1/2,

while the magnitude of the interleaflet coupling is given by

β ≡ α

2|co|
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Because x and y are taken to be linear combinations of mole fractions, the phase diagram

of coupled leaves having free energy (3.1) is obtained in the same way as if x and y were

themselves mole fractions, via the double-tangent construction. Two distinct cases are of

interest: either both ci and co are negative, or only one of these quantities is negative.

We first consider two leaflets which both have an intrinsic tendency to phase-separate.

The temperature is then such that both ci(T ) and co(T ) are negative; we choose them to

have equal magnitudes. Figure 3.1 shows a phase diagram for this situation, where the

coupling between the leaflets is relatively weak (β = 0.5). The system can exist in four
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Figure 3.1: Phase diagram of weakly coupled leaves with both ci and co negative, and of
equal magnitude. The value of the dimensionless interleaflet coupling is β = 0.5. The order
parameters x and y are plotted in units of X̂ and Ŷ .

possible phases, corresponding to a choice of positive or negative order parameter in each

leaflet. These phases are labeled in Figure 3.1 based on whether each leaflet is rich (R) or
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poor (P) in ordered lipids and cholesterol. There are four regions of two-phase coexistence

between phases which differ in composition primarily in one leaflet or the other. Without

any interleaflet coupling these regions would intersect in the middle of the phase diagram,

forming a square region of four-phase coexistence, shown with a dash-dotted line in the

figure. The small coupling has an important qualitative effect on the phase behavior; it leads

to a new region of coexistence between symmetric phases, as well as two triangular regions of

three-phase coexistence. The symmetric coexisting phases are simply the liquid-ordered and

liquid-disordered phases observed in experimental studies of liquid-liquid immiscibility in

symmetric model membranes. Coexistence between three liquid phases requires membranes

of asymmetric average composition, and was observed via fluorescence microscopy by Collins

and Keller [18]. Another thermodynamic consequence of interleaflet coupling is illustrated

in figure 3.2, which gives the phase diagram for the same system but with a larger coupling

(β = 3.0). Consider the three symmetrically composed bilayers represented by points AA,

BB, and CC. Of these, only the composition AA lies in the region of the phase diagram

where a single phase is stable. Compositions BB and CC lead to two-phase coexistence,

but BB lies deeper in the two-phase region and thus has a stronger tendency to phase-

separate. The result of combining one leaflet from each of AA and BB is AB, which does

not phase-separate. However, the asymmetric bilayer AC, although similarly constructed

out of leaflets from the symmetric one-phase and two-phase regions, does undergo phase-

separation. Thus, the phase behavior of an asymmetric bilayer whose outer leaf has a

tendency to phase-separate, but whose inner leaf does not, depends on the strength of the

outer leaf’s tendency to phase separate. This behavior was also observed by Collins and

Keller [18].

We have just considered a bilayer in which the lipids composing both leaflets are such

that they are both capable of undergoing phase separation in the absence of interleaflet

coupling (both ci and co are negative). A different situation occurs in the cell plasma

membrane, since the saturated sphingolipids believed to be responsible for the formation

of lipid rafts reside mostly in the outer (extracellular) leaflet [142, 70]. Experimentally,

model membranes with symmetric compositions meant to mimic the composition of the

outer leaflet of the cell plasma membrane show liquid-liquid phase separation [28], whereas
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Figure 3.2: Phase diagram of strongly coupled leaves with both ci and co negative, and of
equal magnitude. The value of the dimensionless interleaflet coupling is β = 3.0. The order
parameters x and y are plotted in units of X̂ and Ŷ .

membranes with compositions designed to reflect that of the inner (cytoplasmic) leaflet

do not display such phase separation [156]. Therefore it is of interest to consider, in our

phenomenological model, the case in which co(T ) < 0 but ci(T ) > 0, meaning that only the

outer leaflet has an intrinsic tendency to phase-separate. Here we will assume that ci and

co have the same absolute value. Figure 3.3 shows the phase diagram of such a bilayer when

the coupling is weak (β = 0.75). The tie-lines in the coexistence region are nearly vertical,

meaning that the coexisting phases differ primarily in the composition of their outer leaflets.

However, the coupling clearly induces a difference in the inner-leaflet compositions of the

coexisting phases as well, as can be seen by the tilting of the tie-lines, especially for x near

zero. The figure also shows as a dashed line the spinodal, which gives the boundary of
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Figure 3.3: Phase diagram of weakly coupled leaves with co = −ci < 0. The value of the
dimensionless interleaflet coupling is β = 0.75. The order parameters x and y are plotted
in units of X̂ and Ŷ . The spinodal line is shown dashed.

the region of local stability. Average compositions lying within the two-phase region (the

binodal) but outside the spinodal are metastable, that is, globally unstable but locally stable

with respect to small changes in composition. Mathematically, the spinodal line is given by

the vanishing of the determinant of the matrix of second derivatives of the free energy:

det

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

 = 0 (3.2)

As the dimensionless interleaflet coupling β is increased, the effect on the inner leaflet of the

phase separation driven by the outer leaflet becomes more important. Additionally, near

x = 0 the spinodal line begins to move toward the boundary of the two-phase region. As the

coupling is further increased, miscibility critical points appear at the two locations where

the spinodal line and binodal lines meet, as shown in Figure 3.4, in which the dimensionless

coupling has been increased to β = 4.0. These critical points occur at the ends of two

new regions of two-phase coexistence. Interestingly, in these regions the coexisting phases

differ primarily in their inner-leaflet compositions, even though the phase separation of the

whole system is driven by interactions in the outer leaflet. Three-phase coexistence regions
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Figure 3.4: Phase diagram of strongly coupled leaves with co = −ci < 0. The value of the
dimensionless interleaflet coupling is β = 4.0. The order parameters x and y are plotted in
units of X̂ and Ŷ . The spinodal line is shown dashed.

also appear at high interleaflet coupling, as in the previous case where both ci and co were

negative. Thus, if the temperature and the composition of a bilayer are such that only one

of its leaflets has an intrinsic tendency to phase separate, the regime of strong coupling

is marked by a qualitative change in phase behavior, characterized by the possibility of

three-phase coexistence.

3.3 Thermodynamic Definition of Interleaflet Coupling: Canonical Ensemble

At a theoretical level, it is important to define the interleaflet coupling energy in a precise

manner. In this section we define it as the free energy difference γ, per unit area, between

the initial and final states of a process depicted in Figure 3.5. The initial state (1) consists

of two equal areas A of the symmetric coexisting phases Lo and Ld. Because these phases

have different areas per molecule, there are different numbers of molecules in the two halves:

N1 in the Ld-Ld bilayer and N2 in the Lo-Lo bilayer. The final state (2) is reached in two

steps. First, the top leaflet is flipped, so that Lo is across from Ld in both halves of

the bilayer, which still each have area A. Secondly, the area of this asymmetric bilayer
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Figure 3.5: Mismatch process used to define interleaflet coupling energy γ.

is allowed to equilibrate at zero surface tension. The asymmetric bilayer then has a new

area 2 · A′. Since we are not interested in the linear interface between the left and right

halves of the bilayer shown at the bottom of Figure 3.5, we may flip one half and consider

both asymmetric halves to have the Ld composition on top. The relevant thermodynamic

potential is the Helmholtz free energy, since the initial and final states have the same

number of each species of molecule. We define the interleaflet coupling energy in terms

of the Helmholtz free energy difference between the final and initial states. However, this

free energy difference is extensive, that is, proportional to A or equivalently to A′. For this

reason we define the overlap energy or coupling γ to be

γ ≡ F2 − F1

2A′
(3.3)
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The quantity γ is the free energy cost of creating a unit area of asymmetric membrane at

the expense of two areas of the symmetric phases, equal to each other but not necessarily

to the area of the new asymmetric region.

The interleaflet coupling energy γ is an intensive quantity, so we may write it in terms

of other intensive quantities, such as the Helmholtz free energies per molecule in the three

phases (the two symmetric phases as well as the asymmetric one).

fLd,Ld
≡

FLd,Ld

N1
(3.4)

fLo,Lo ≡
FLo,Lo

N2
(3.5)

fLd,Lo ≡
βFLd,Lo

N1 +N2
=

βF2

N1 +N2
(3.6)

The other intensive quantities characterizing the phases are the areas per molecule:

aLd,Ld
≡ A

N1
(3.7)

aLo,Lo ≡ A

N2
(3.8)

aLd,Lo ≡ 2A′

N1 +N2
(3.9)

Note that the denominator in an area per molecule a is the total number of molecules in

both leaflets of the bilayer.

We now have everything we need to write F1 and F2 in terms of known intensive quan-

tities.

F1 = N1fLd,Ld
+N2fLo,Lo

= (A/aLd,Ld
)fLd,Ld

+ (A/aLo,Lo)fLo,Lo

= A · (
fLd,Ld

aLd,Ld

+
fLo,Lo

aLo,Lo

) (3.10)

F2 = (N1 +N2)fLd,Lo = 2A′ ·
fLd,Lo

aLd,Lo

(3.11)

This allows us to calculate γ:

γ =
fLd,Lo

aLd,Lo

− 1
2
· A
A′
· (
fLd,Ld

aLd,Ld

+
fLo,Lo

aLo,Lo

) (3.12)
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This expression agrees with that of May [91] only when the factor A/A′ is unity. May seems

to assume implicitly that the areal densities of the leaflets participating in the mismatch

process do not change during that process. This assumption may seem reasonable on the

grounds that that the areal density of a leaflet is primarily determined by intermolecular

interaction within that leaflet. We will see in section 3.7 that although the ratio A/A′ is

very close to unity, its deviation from unity can easily throw off a numerical estimate of γ

in a tensionless bilayer.

We note that A/2A′ can be written in terms of intensive quantities:

A

2A′
=

N1 · aLd,Ld

(N1 +N2) · aLd,Lo

= η ·
aLd,Ld

aLd,Lo

, (3.13)

where η characterizes the difference in areal densities between the symmetric Lo-Lo and

Ld-Ld phases:

η ≡
aLo,Lo

aLo,Lo + aLd,Ld

(3.14)

3.4 Thermodynamic Definition of Interleaflet Coupling: Grand Canonical En-
semble

In the previous section the interleaflet coupling γ was defined in terms of the free energy

change per unit area during a process occurring with constant numbers of molecules of each

species. It was assumed that a fluctuation away from interleaflet domain registry gives

rise to an asymmetric mismatch region whose leaflets have the same compositions as the

two symmetric coexisting phases. In this section we give an alternative definition of the

interleaflet coupling by describing a mismatch process occurring at fixed chemical potentials.

This, in turn, results in another definition of the interleaflet coupling, the grand canonical

coupling γgc.

If compositionally symmetric regions of liquid-ordered and liquid-disordered phases are

in coexistence, then the chemical potentials of all molecular species are necessarily the

same in both phases. Thus it is reasonable to view a mismatch region at the interface

of the phases as being in contact with a particle reservoir which maintains these chemical

potentials. The cost per unit area of mismatch fluctuations will then be given by the
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change in the appropriate thermodynamic potential between the final (asymmetric) and

initial (symmetric) states. This potential is the Legendre transform of the Helmholtz free

energy F with respect to particle numbers Ni. But the two-dimensional version of the

thermodynamic Euler relation gives

F −
∑
i

µiNi = U − TS −
∑
i

µiNi = αA, (3.15)

where α is the surface tension. Thus the two-dimensional version of the grand potential

is equal to the surface tension times the area. This is analogous to the familiar situation

in three dimensions, where the grand potential is p · V . We define the grand canonical

interleaflet coupling γgc to be the difference in grand potential per unit area between the

asymmetric final state (Ld-Lo) and the initial state composed of symmetric regions (Ld-Ld

and Lo-Lo).

γgc ≡ αLd,Lo −
1
2

(αLd,Ld
+ αLo,Lo) (3.16)

However, we assume that the bilayer is tensionless, so that in the coexisting symmetric

phases the surface tension is zero. Thus the grand canonical interleaflet coupling has the

particularly simple form

γgc ≡ αLd,Lo (3.17)

We emphasize the difference between this definition of the interleaflet coupling and the one

defined in the canonical ensemble in the previous section. In the grand canonical ensemble,

the asymmetric mismatch state is taken to have the same chemical potentials as the two

coexisting symmetric states. One manifestation of the interleaflet coupling is that the chem-

ical potential of, for example, an inner-leaflet saturated lipid depends on the composition

of the outer leaflet. Thus, in order to impose on the asymmetric bilayer the same chemical

potentials occurring in the coexisting phases, we must slightly change its composition (the

areal densities of each molecular species) compared to those of the symmetric phases. In

section 3.7 we will show how the grand canonical interleaflet coupling can be estimated with

the same computer program we use to calculate the canonical interleaflet coupling.
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3.5 The Nature and Magnitude of the Interleaflet Coupling

We have seen that experiments on mixed model membranes indicate the existence of an

interleaflet coupling between the compositional states of the two leaflets, and that this

coupling has significant consequences for the phase behavior of mixed membranes. Little

is known with certainty about the molecular mechanism of the interleaflet coupling or

its magnitude as defined in section 3.3. In this section we discuss a number of possible

mechanisms [17, 91] for the interleaflet coupling and review the previous work that has

been done to estimate its magnitude.

Collins [17] defined the interleaflet coupling as an effective surface tension acting at

the bilayer midplane in “mismatch” regions where one leaflet is liquid-ordered and the

other is liquid-disordered. He also gave [17] the following interesting heuristic estimate

of its magnitude. We make two assumptions: First, that whatever the mechanism of the

interleaflet coupling may be, it is driven by the same interactions responsible for phase

separation between liquid-ordered and -disordered phases. Second, we assume that the line

tension τ between these phases is the result of this same surface tension acting over an area

given by the thickness of the hydrophobic region times the length of the interface between

the phases. These assumptions relate the interleaflet coupling energy per unit area, which

we call γ, to the line tension τ at a liquid-liquid interface, which has been measured [139, 59],

and to the hydrophobic thickness h of the bilayer:

γ ≈ τ

h
(3.18)

Using τ = 5 pN and h = 2.5 nm, Collins obtained [17] the estimate γ ≈ 0.5 kBT/nm2.

The possible mechanisms of the interleaflet coupling were recently reviewed by May

[91]. In one scenario, domain registry in phase-separated symmetric bilayers is caused by

the rapid interleaflet translocation or “flip-flop” of cholesterol. Whereas the time scale of

phospholipid flip-flop is quite slow, often of minutes or hours [127], cholesterol flip-flops quite

rapidly, probably on millisecond time scales [53, 15]. It therefore seems possible that during

a mismatch fluctuation, the cholesterol-rich liquid-ordered phase signals its presence to the

opposite leaflet via cholesterol flip-flop. A closely related mechanism is considered by May
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[91], in which the flip-flop rate of a cholesterol molecule residing in the liquid-disordered

phase depends greatly on the the phase of the opposite leaflet, leading to a decrease in

entropy if the molecule is prevented from flip-flopping by an apposing liquid-ordered leaflet.

However, as pointed out by Collins [17], the rapid equilibration of cholesterol’s chemical

potential cannot carry any information across the bilayer; by definition, both coexisting

phases have the same chemical potential for cholesterol. In the absence of any other form

of interleaflet coupling, there is no reason for a cholesterol molecule in one leaflet to “want”

to be in the other. Put in other terms, both leaflets can be considered to be in equilibrium

with a single particle bath which determines their chemical potentials. This equilibrium

does not couple them any more than does their being in equilibrium with the same thermal

reservoir.

May and collaborators [4, 154, 91] have determined the electrostatic contribution to the

interleaflet coupling by calculating the electrostatic free energy of an asymmetrically charged

lipid bilayer in an aqueous salt solution. However, they find that the resulting coupling is not

only much smaller than the order of magnitude expected from coarse-grained MD simulation

[123], but is also negative, favoring mismatch regions where leaflets are in different phases.

The negative sign of the electrostatic contribution to the coupling is intuitively clear. If

one of the constituents of a mixture is charged, or if two are oppositely charged, this causes

a repulsion between like molecules, whether within a leaflet or between different leaflets.

Finally, it is clear that electric charges can not be of primary importance in the interleaflet

coupling, which is observed in mixtures of neutral lipids. We will examine more closely the

effect of charges on miscibility in Chapter 4.

Another possible interleaflet coupling mechanism considered by May [91] is bilayer in-

terdigitation, that is, the existence of a region near the bilayer midplane where the densities

of molecules from the two leaflets overlap. There are several different contributions that

could be thought of as resulting from interdigitation, including changes in the internal en-

ergies and entropies of molecules as well as direct intermolecular interactions of the kind

considered in the model of Elliott et al. [36]. May argues that the lipids in the Ld leaflet lose

internal (configurational) entropy when the opposite leaflet is in the Lo phase, since they

cannot easily cross the bilayer midplane into the densely-packed Lo leaflet. In contrast, the
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Ld phase is more loosely packed, and more easily accommodates interdigitation. He makes a

rough estimate of the resulting interleaflet coupling using calculations by Szleifer et al. [136],

by comparing the free energy of a lipid in a monolayer to that of a lipid in a bilayer, whose

configurations are limited by the apposed leaflet. The result is γ ≈ 0.3 kBT/nm2, which

is of the same order of magnitude as Collins’ heuristic estimate [17], as well as the value

extracted from coarse-grained MD simulations by Risselada and Marrink [123], as discussed

in the next section.

A number of other possible mechanisms for interleaflet coupling have not received close

attention in the context of liquid-liquid phase separation. An estimate of the curvature-

mediated coupling [80, 138, 86] mentioned in Section 3.2 awaits a detailed molecular calcu-

lation of the composition-dependence of the spontaneous curvature of asymmetric bilayers

containing cholesterol. Van der Waals interactions, which undoubtedly play an important

role in the gel-liquid transitions [100], may also be relevant in liquid-liquid phase separa-

tion and could contribute to the interleaflet coupling. Finally we mention one interaction

that is sometimes assumed to contribute to the interleaflet coupling, and furthermore to

cause a negative coupling: the elastic energy of deformation which occurs at the boundary

between the liquid-ordered and -disordered phases. It is clear that the abrupt change in

bilayer thickness at the boundary between symmetric Lo-Lo and Ld-Ld phases comes at an

energetic cost, both due to elastic deformation and to contact between hydrophobic lipid

tails and water. Considering only the energy of this interface, it seems that this energy

cost would be minimized if instead the bilayer were asymmetric: an Ld-Lo bilayer would

then coexist with an Lo-Ld bilayer of equal thickness. It is important to recognize, firstly,

that this situation does not occur in experiment, and secondly, that this argument does

not describe a contribution to the interleaflet coupling (which is an energy per unit area),

but rather a contribution to the line tension. The elastic contribution to the line tension

was calculated by Kuzmin et al. [73], who erroneously claim that all other contributions

to the line tension are negligible; were this the case, the system would do better to avoid

phase-separating in the first place.
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3.6 Fluctuations of Phase Boundaries in Coupled Leaflets

The absence of optically visible mismatch fluctuations in liquid-liquid phase-separated vesi-

cles [17] seems to indicate that the interleaflet coupling is in some sense “large.” Because the

interleaflet coupling γ is a free energy penalty per unit area, it is natural to assume that the

magnitude of γ should tell us directly the characteristic area of mismatch fluctuations. Thus,

Risselada and Marrink extracted from their coarse-grained simulation [123] an estimate of

γ ≈ 0.15 kBT/nm2, and argued from γ · 20 nm2 ≈ 3 kBT that mismatch fluctuations larger

than roughly 20 nm2 should be suppressed, explaining the experimental absence of visible

mismatch fluctuations. In this section we describe the fluctuations of phase boundaries of

two coupled leaflets, showing that mismatch of domains is characterized by a characteristic

length rather than a characteristic area. This length turns out to depend only weakly on

the coupling energy γ, which implies that the characteristic thickness of mismatch regions

will be below optical resolution even when γ is greatly reduced.

We consider a fluid lipid bilayer that has phase-separated into macroscopic regions of the

liquid-ordered and -disordered phases; this situation is shown in figure 3.6, as viewed from

above. Since the bilayer has two leaflets, there are two boundaries. As these boundaries

fluctuate, their deviations from the x axis are parameterized by z1(x) and z2(x). Our goal

is to characterize the fluctuations of the phase boundary, whose average position is taken

to lie along the x axis. We assume that these functions are single-valued, meaning that the

interfaces don’t curve back on themselves. A microstate of this system is given by functions

z1(x) and z2(x), defined on a finite interval [0, L]. The Hamiltonian includes two types of

energy contribution. First, there is a line tension τ acting within each leaflet. It is the

energy per unit arc-length of interface between the phases, and gives rise to the following

terms of the Hamiltonian

Hline [z1, z2] = τ

∫ L

0

[√
1 + (dz1/dx)2 +

√
1 + (dz2/dx)2

]
dx (3.19)

We now assume that the fluctuations are small enough to justify the linearization
√

1 + (dz/dx)2 ≈

1 + (1/2) · (dz/dx)2. The contribution of the line tension to the Hamiltonian becomes, ig-
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Figure 3.6: Fluctuating phase boundaries in a bilayer with coupled leaflets, seen from above.
The mismatch area is A.

noring an additive constant,

Hline [z1, z2] =
τ

2
·
∫ L

0

[
(
dz1

dx
)2 + (

dz2

dx
)2

]
dx (3.20)

The interleaflet coupling γ gives rise to another contribution to the Hamiltonian, propor-

tional to the area A enclosed between the curves z1(x) and z2(x). That area is shaded and

labeled in figure 3.6. The contribution of this interaction to the Hamiltonian is

Harea [z1, z2] = γ ·A = γ ·
∫ L

0
|z1(x)− z2(x)|dx (3.21)

Note that the area A is the integral of the absolute value of the difference between z1 and

z2. The total Hamiltonian functional which we will work with is

H [z1, z2] =
∫ L

0

[
τ

2
· (dz1

dx
)2 +

τ

2
· (dz2

dx
)2 + γ · |z1(x)− z2(x)|

]
dx (3.22)

Ultimately, we would like to calculate statistical properties of the system interacting with

this Hamiltonian. This will be possible if we can calculate the following partition function.

Z(τ, γ) =
∫
Dz1Dz2 exp(−βH [z1, z2]) (3.23)

Without the last term in equation (3.22), this path integral would be Gaussian and would

lead to equations [38] similar to those used by Honerkamp-Smith et al. [59] to analyze
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Classical quantity Quantum quantity

Spatial coordinate x Time coordinate t

Line tension τ Mass m

Microstate z1(x), z2(x) Paths of two particles z1(t), z2(t)

Energy of a microstate in units of kBT Action of a path in units of h̄

Partition function Propagator

Free energy density in limit L→∞ Ground state energy

Table 3.1: Statistical mechanics/quantum mechanics correspondence

domain boundary fluctuations and thus to extract the line tension of liquid-liquid domain

boundaries.

If the space coordinate x is relabeled as time t, then equation (3.23) becomes the

imaginary-time path integral of two quantum particles in one dimension with positions

z1 and z2 interacting with each other via a potential γ|z1 − z2|. Such a correspondence

between a two-dimensional statistical mechanics problem and a one-dimensional quantum

mechanics problem is quite general and of frequent use in polymer physics [51] as well as

in other problems involving domain boundaries in two-dimensional systems [25]. In our

situation the correspondence is summarized in Table 3.6. We are interested in the sepa-

ration between the two interfaces, so in the quantum mechanical problem we will work in

the center of mass frame. The time-independent Schrödinger equation for the separation z

between the particles is

− h̄
2

2µ
· ∂

2

∂z2
ψ(z) + γ|z| = Eψ(z), (3.24)

where µ = m/2 is the reduced mass. Note that the γ in the Schrödinger equation and the

γ in the classical problem have different units because of the correspondence between the

distance x in the classical problem and the time t in the quantum problem. This equation

can be solved analytically in terms of Airy functions [113]. The characteristic spatial extent
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of the wavefunction is

lquant =
[
h̄2

2µγ

]1/3

(3.25)

In the classical statistical mechanics problem this corresponds to the following characteristic

distance between the fluctuating interfaces:

l =
[

(kBT )2

τγ

]1/3

(3.26)

The average separation between the interfaces increases with temperature and decreases

with γ and τ . If we take values of γ = 0.1 kBT ·nm−2 and τ = 1 pN , we get l ≈ 3.5 nm. The

fact that the domain interfaces in the two leaflets stay within roughly a distance l of each

other is the reason why mismatch fluctuations are never observed in fluorescence microscopy.

Furthermore, changing the value of the coupling energy γ hardly affects this result; if γ is

reduced by a factor of ten, the characteristic separation l between the interfaces increases by

roughly a factor of two, and the mismatch region remains invisible to the optical microscope.

The ground state energy of the quantum system is [113]

Equant ≈
[

3π
8

]2/3

·
[
h̄2γ2

2µ

]1/3

(3.27)

The equation above immediately gives us the free energy per unit length of the classical

system:

lim
L→∞

F

L
≈
[

3π
8

]2/3

·
[

(kBT )2γ2

τ

]1/3

(3.28)

With this free energy, we can calculate the average overlap area by taking the derivative of

F with respect to γ:

〈A〉 =

∫
Dz1Dz2

[∫ L
0 |z1(x)− z2(x)|dx

]
exp(−βH [z1, z2])∫

Dz1Dz2 exp(−βH [z1, z2])

= −kBT
∂

∂γ
lnZ =

∂F

∂γ
(3.29)

Therefore the average mismatch area per unit interface length is

〈A〉
L

=
2
3
·
[

3π
8

]2/3

·
[

(kBT )2

γτ

]1/3

, (3.30)
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or in other words

〈A〉 = 0.74 · l · L. (3.31)

The mismatch area is therefore extensive, being proportional to L, the “projected length”

of the interface along the x direction. This result invalidates the method by which Risselada

and Marrink [123] extracted a value of γ from a coarse-grained MD simulation. They sim-

ulated a phase-separated system with projected interface length L ≈ 40 nm, and generated

a histogram representing the probability distribution of values of the total mismatch area

A. Their results are shown in Figure 3.7, where the probability of obtaining a mismatch

area A is plotted logarithmically. Risselada and Marrink estimated γ by fitting −β lnP (A)

to a straight line in the regime of large mismatch area A. That is, they assumed that

the temperature and γ alone determine the probability distribution of mismatch areas via

P (A) ≈ exp(−βγA). However, this neglects the fact that the mismatch area is an extensive

quantity. If, hypothetically, Risselada and Marrink had run a simulation at extremely large

interface length L, they would have obtained extremely large areas A and would thus have

extracted a much smaller value of γ.

In order to determine the correct method of estimating γ from simulation data such as

those of Risselada and Marrink, we must derive not only the average mismatch area 〈A〉 but

also the full probability distribution of areas P (A). Formally this can be written in terms

of the path integral.

P (a) =
∫
Dz1Dz2δ(A [z1, z2]− a) exp(−βH [z1, z2])∫

Dz1Dz2 exp(−βH [z1, z2])
(3.32)

Now the delta function can be written as

δ(A− a) =
1

2π
·
∫ ∞
−∞

exp [−iβγ̃(A− a)] dβγ̃, (3.33)
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in atomistic simulations of preassembled, raft-like mixtures (13).
Because of the fluid nature of the Lo phase, at distances
exceeding a few nanometers, any correlation is lost, as illustrated
by the absence of long-range order in the radial distribution
function.

Domain Boundary Between Lo and Ld Phases Is Diffuse at the Molecular
Level. Although our simulations do not answer the question of
why cholesterol and saturated lipids are attracted to each other,
their co-condensation leads to domains differing strongly in both
structural and dynamic properties. Apparently sharp on a mac-
roscopic level, at the molecular level the domain boundary
interface is rather diffuse. Restricting ourselves to the compo-
sitional measurement (Fig. 2B), this interfacial region is !5 nm
wide, characterized by a composition in between that of the Ld
and Lo phase. The broadness of the interface is largely a result
of thermally induced capillary waves along the domain bound-
ary. Based on fluctuation analysis (23), we estimate the associ-
ated line tension as 3.5 " 0.5 pN, which is within the range of
experimental values reported for ternary diC18:1-PC/sphingho-
myelin/cholesterol mixtures at room temperature (4). Note that
our estimate of the line tension is based on microscopic fluctu-
ations that may also include contributions from the natural
mixing gradient that exists between phase-separated domains.
Especially close to the miscibility critical point, the line tension
vanishes and the compositional mixing correlation length di-
verges. The large value of the line tension in our system implies
that we are far from the critical point. An independent estimate
of the line tension based on the pressure anisotropy in the system
indeed gives a similar value compared to the fluctuation-based
value, indicating that the dominant contribution arises from the
capillary broadening. Details of these calculations are given in SI
Methods.

Our simulations further reveal that the domain boundary
interfaces opposing the raft-like domain exhibit larger fluctua-
tions (Fig. 4 A and B) and therefore are energetically less costly.
In terms of a line tension, the difference between the 2 types of
interfaces is significant, 2.5 " 0.3 pN vs. 4.5 " 0.6 pN for the
domain boundaries opposing the Lo and Ld phases, respectively.
The existence of 2 types of interfaces is unanticipated and arises
from the slight asymmetric registration of the domains (Fig. 4 A
and B). Based on the compositional profiles for the individual
monolayers (Fig. 2B), the difference in the average position of
the boundaries is found to be !2 nm. These results predict the
existence of a small, repulsive, effective interaction, possibly of
entropic origin, between the domain boundary interfaces.

Domain Registration Is Caused by the Existence of a Small Domain
Surface Tension. In addition to this domain interface repulsion,
there must exist a counteracting driving force leading to the
interleaflet colocalization (i.e., registration) of the domains, as
seen in Figs. 1C and 2A and further quantified in Fig. 4C.
Experiments on fluid–fluid phase-separated bilayers also show
this domain registration (24). A plausible mechanism for mono-
layer coupling is the presence of a small surface tension between
the 2 leaflets when the 2 different phases are in contact (25).
Assuming that, for large mismatch areas, the dominant contri-
bution to the free energy of the system arises from the surface
tension of ! between the Lo and Ld phases, we can write P(#A) !
e$!#A, with probability distribution P(#A) of the mismatch area
#A. Fitting ln P in the regime of a large mismatch area (Fig. 4D)
gives a surface tension of ! % 0.15 " 0.05 kT!nm$2. Even such
a small tension effectively suppresses overhang fluctuations
larger than !20 nm2 and therefore explains the registration of
the domains on the macroscopic level probed experimentally. On
the other hand, in real biological membranes the coupling is
necessarily weaker because of the asymmetric lipid distribution,

offering a possible explanation for the limited domain sizes seen
in vivo.

In summary, we showed that the phase coexistence of a Lo,
raft-like domain, and a Ld, non-raft domain can be realistically
simulated with a recently parameterized coarse-grained model.
We should keep in mind, however, that the simulation model
used here is a simplified one, lacking atomistic detail. It would
be interesting to back-transform our equilibrated system to a
fine-grained representation to verify our predictions. Our pre-
dictions include the existence of a small surface tension between
the domains, driving their registration, and a short-ranged line
repulsion between the domain boundaries. Although many
questions remain, simulations such as presented in the current
work will hopefully aid in our understanding of the nature of
lipid rafts, and to many related cell membrane processes such as
the self-assembly of functional protein complexes.

Methods
The MARTINI Model. All systems were simulated with the MARTINI CG force
field (11), version 2.0. The MARTINI model has been parameterized extensively
over the past 5 years by using a chemical building block principle. The key
feature is the reproduction of thermodynamic data, especially the partition-
ing of the building blocks between aqueous and oil phases. In a series of
applications (26–29) the model has been shown to reproduce many properties
of lipid membranes. The MARTINI model uses a 4-to-1 mapping; i.e., on
average, 4 heavy atoms are represented by a single interaction center, with an
exception for ring-like molecules such as cholesterol that are mapped with

Fig. 4. Driving forces for domain formation. (A) Image showing the overlap
of the 2 raft domains at the end of the simulation (t % 20 "s). Only the CG beads
corresponding to the phosphate group (PCs) or hydroxyl group (cholesterol)
are shown as green solid spheres for the lower monolayer and transparent
yellow spheres for the upper monolayer. The direction across the domains is
indicated by x, and the direction along the domains is indicated by y. (B)
Overlaying instantaneous configurations of the domain interfaces in the
upper (yellow) and lower (green) monolayer leaflets during the last 4 "s of the
simulation. Note the difference in fluctuations for the 2 innermost interfaces,
which oppose the Lo phase, vs. the outermost interfaces opposing the Ld

domain. (C) Minimization of the perimeter of the domain interface for each
of the 2 monolayers (yellow and green curves, left axis) and the increase in
registration between the domains formed in both monolayer leaflets, ex-
pressed as the surface overlap fraction (black curve, right axis). (D) Logarithmic
probability of the area mismatch vs. area mismatch. The solid line denotes a
linear fit of the data in the high mismatch regime, from which the effective
surface tension between the monolayer leaflets is estimated.

17370 ! www.pnas.org"cgi"doi"10.1073"pnas.0807527105 Risselada and Marrink

Figure 3.7: Histogram giving the probability distribution of mismatch areas A, from Risse-
lada et al. [123].

with the result

P (a) =
1

2π
·
∫∞
−∞ dβγ̃ exp(iβγ̃a)

∫
Dz1Dz2 exp(−iβγ̃A [z1, z2]) exp(−βH [z1, z2])∫
Dz1Dz2 exp(−βH [z1, z2])

=
1

2π
·
∫ ∞
−∞

dβγ̃ exp(iβγ̃a)
Z(τ, γ + iγ̃)
Z(τ, γ)

=
1

2π
· Z(τ, γ)−1 ·

∫ ∞
−∞

dβγ̃ exp(iβγ̃a) exp [−βF (τ, γ + iγ̃)]

=
1

2π
· Z(τ, γ)−1 ·

∫ ∞
−∞

dβγ̃ exp(iβγ̃a) exp

[
−βL ·

[
3π
8

]2/3

·
[

(kBT )2(γ + iγ̃)2

τ

]1/3
]

From the fact that the argument of the exponential is dimensionless, we see that there is a

characteristic value γ0 of γ:

γ0 =
8

3π
·
[
kBT · τ
L3

]1/2

. (3.34)
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The integral can be made dimensionless in terms of the quantities

g ≡ γ

γ0

g̃ ≡ γ̃

γ0

ã ≡ βγ0a

P (a) =
1

2π
· Z(τ, γ)−1βγ0

∫ ∞
−∞

dg̃ exp
[
ig̃ã− (g + ig̃)2/3

]
(3.35)

=
1

2π
βγ0 exp(g̃2/3)

∫ ∞
−∞

dg̃ exp
[
ig̃ã− (g + ig̃)2/3

]
(3.36)

This integral can be calculated numerically. Figure 3.8 shows, for several values of the scaled

coupling energy g, a plot of the probability distribution of the scaled area ã, defined by:

P̃ (ã) = kBTγ
−1
0 P (kBTγ−1

0 ã) (3.37)

Interestingly, there is an interval of small values of the mismatch area where the probability
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Figure 3.8: Probability distribution of scaled mismatch area ã, calculated numerically with
the following values of the scaled coupling energy g, which can be read from right to left in
the figure as: 1 (purple), 5 (blue), 10 (red), 20 (black), and 50 (green).

is almost identically zero. This effect is of entropic origin, since there are very few config-

urations with small mismatch areas. It is not the same effect as the short-range entropic
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repulsion between the interfaces which Risselada and Marrink [123] inferred from their ob-

servation that the interfaces tended to stay a fixed distance (roughly 2 nm) apart, since such

an effect is not present in our model. It is possible that this 2 nm “preferred” separation

between the interfaces is instead due to a minimization of stretching energy; the change in

bilayer thickness between the liquid-ordered and -disordered phases is spread out over this

distance to avoid a large elastic contribution to the line tension [73] between the phases.

From the probability distribution given by equation (3.37) we may make a comparison

with the data of Risselada and Marrink [123]. For this purpose we must first determine

a value of the characteristic scale γ0. The simulation of Risselada and Marrink was done

at T = 295K and L = 40 nm. They also measured different line tensions τ = 2.5 pN and

τ = 4.5 pN in the interfaces belonging to the two leaflets. This distinction is possible because

of the observed constant 2 nm offset between the interfaces in the leaflets, due to which one

interface was always across from a liquid-disordered leaflet, while the other interface was

always across from a liquid-ordered leaflet. Taking τ = 3 pN, which is roughly the average

of the two line tensions of Risselada and Marrink, we have γ0 = 0.003 kBT/nm2. With this

scale, we plot in Figure 3.9 the probability distribution of mismatch areas predicted by our

model. Also shown in the figure is a normalized approximate fit to the data of Risselada

and Marrink, given by

P (A) ≈ 0.075 · exp
[
−(0.15 kBT · nm−2) · |A− 50 nm2|/kBT

]
, (3.38)

The green curve with g = 50 has approximately the same slope as the empirical fit in the

regime of large mismatch areas, and we may use it to estimate γ ≈ g · γ0 = 0.15 kBT/nm2.

Choosing g = 70 (shown in red), so as to more closely match the average mismatch area,

leads to γ ≈ 0.2 kBT/nm2. Thus, although we have shown that the means by which Ris-

selada and Marrink estimated γ was incorrect, it seems that they fortuitously obtained a

value which we cannot dispute. Furthermore, this value is of the same order of magnitude

as the heuristic estimate made by Collins [17].

We note that other interesting quantities can be calculated using the correspondence

summarized in Table 3.6. For example, one may ask what is the correlation length of the

fluctuating interfaces along the x direction (see Figure 3.6). That is, if the interfaces were
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Figure 3.9: Logarithm of probability distribution of mismatch areas scaled by kBT , as
predicted by equation (3.37). Values of the scaled coupling energy g are: 20 (black), 50
(green), and 70 (red). Also shown is a suitably normalized approximate fit, given by equation
(3.38), to the data of Risselada and Marrink [123].

somehow fixed at one end, how long would they need to be in order to recover the equilibrium

probability distribution of separations |z1(x)− z2(x)|, characterized by the ground state of

the quantum problem? Equivalently, how long does an interface need to be in order to be

considered a “bulk” interface described by the results just derived in the limit L → ∞?

This correlation length corresponds roughly to the lifetime of the first excited state of the

quantum mechanics problem,

∆t ≈ h̄

∆E
, (3.39)

where ∆E is the difference in energy between the first excited state and the ground state

(see [113]):

∆E ≈
[
(
9π
8

)2/3 − (
3π
8

)2/3

]
·
[
h̄2γ2

2µ

]1/3

,

∆t ≈ 0.83 ·
[

2µh̄
γ2

]1/3

(3.40)

The corresponding classical quantity is the correlation length

ξ = 0.83 ·
[
kBT · τ
γ2

]1/3

(3.41)
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Note that this length scale is a priori different from the typical distance between the in-

terfaces, given by equation (3.26). If we take reasonable values of γ = 0.1 kBT · nm−2 and

τ = 1 pN , we get ξ ≈ 3 nm.

3.7 Microscopic Calculation of Interleaflet Coupling

We have performed calculations of the interleaflet coupling γ, as defined in the canonical

ensemble in Section 3.3, using the model of Elliott et al. [36] described in Section 2.3. For this

purpose we modified a computer program developed by Szleifer and collaborators [141] that

implements this model. The modifications allow the program to calculate the Helmholtz

free energy of compositionally asymmetric bilayers, as required for the computation of γ.

Figure 3.10 shows the phase diagram calculated by Uline et al. [141] for a ternary mix-

ture of saturated lipids, unsaturated lipids and cholesterol at a temperature of 290 K. More

specifically, the saturated lipids have two chains of 16 carbons each (C16:0) as in DPPC

and the unsaturated lipids have two chains, each of 18 carbons and with a double bond

near the middle of the chain (C18:1) as in DOPC. This phase diagram shows the main

features of the phase behavior of ternary mixtures such as the DOPC/DPPC/cholesterol

mixture, including a gel phase at compositions near the pure saturated one, as well as co-

existing liquid-ordered and liquid-disordered phases. Note that the region of liquid-liquid

coexistence in the model of Elliott et al. extends all the way to the binary mixture of

unsaturated lipids and cholesterol. This is in qualitative agreement with the phase dia-

gram reported for the DOPC/DPPC/cholesterol mixture by Davis et al. [20] as well as that

given by de Almeida et al. [21] for a similar mixture where the saturated lipid is palmi-

toyl sphingomyelin (PSM). However, it disagrees with the phase diagram published for the

DOPC/DPPC/cholesterol by Veatch et al. [147] in which the region of liquid-liquid coexis-

tence ends in a critical point rather than extending toward the edge of the phase diagram

representing the binary unsaturated lipid/cholesterol mixture. The origin of the discrep-

ancy between the phase diagram of Veatch et al. and that of de Almeida et al. for the same

mixture is the same as was discussed in section 1.2 in the context of the binary mixture of

DPPC and cholesterol, namely that de Almeida et al. [21] consider evidence of nanoscopic

inheterogeneities as indicative of phase coexistence, whereas Veatch et al. [147] do not. We
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Figure 3.10: Ternary phase diagram calculated by Uline et al. [141] from the model of Elliott
et al. [36]. The temperature is 290 K.

argued in section 1.2 in favor of a more conservative definition of phase coexistence as a

purely macroscopic phenomenon. Thus it seems that the phase diagram shown in Figure

3.10, which was calculated on the basis of this definition, does not completely reflect the

phase behavior of the DOPC/DPPC/cholesterol mixture. However, we believe that the

model of Elliott et al. nevertheless describes the essential interactions of this mixture well,

as indicated by the fact that it reproduces three phases with properties close to [34, 36]

those of the experimentally observed gel, liquid-disordered, and liquid-ordered phases.

We have used the model of Elliott et al. to calculate the interleaflet coupling γ using the

following definition derived in the canonical ensemble in Section 3.3:

γ =
fLd,Lo

aLd,Lo

− 1
2
· A
A′
· (
fLd,Ld

aLd,Ld

+
fLo,Lo

aLo,Lo

) (3.42)

The subscripts of quantities such as free energies per molecule (f) and areas per molecule

(a) indicate the compositions of both leaflets (inner, outer). The ratio of areas A/2A′ can
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be expressed in terms of intensive quantities as follows

A

2A′
= η ·

aLd,Ld

aLd,Lo

, (3.43)

where η is, for a given area of the bilayer, the fraction of its molecules residing in the inner

leaflet. Equation (3.42) allows us to calculate the interleaflet coupling γ by determining the

free energies and areas per molecule of the symmetric coexisting phases (Ld-Ld and Lo-Lo)

as well as the asymmetric composition resulting from a mismatch of phases between the

two leaflets (Ld-Lo). We calculated these quantities using the modified computer program

of Uline et al. [141]; the resulting values of γ are shown in Table 3.2. The tie-lines of liquid-

liquid coexistence used to determine the mole fractions of the symmetric and asymmetric

bilayers are labeled A, B, C, and D in Figure 3.10. The calculated interleaflet couplings

are of order 0.01 – 0.03 kBT/nm2 and decrease with increasing concentration of cholesterol.

These values are roughly a factor of ten smaller than the value estimated by Risselada and

Marrink [123] on the basis of coarse-grained MD simulations, as well as the heuristic estimate

of Collins [17]. Although this discrepancy may indicate that the essential mechanism of the

interleaflet coupling is missing from the model of Elliott et al., it is by no means obvious

that this is the case. The estimate of Collins (see section 3.5) involves a number of strong

assumptions about the nature of the interleaflet coupling as well as the line tension between

the coexisting phases, and it is likely that the value obtained by Risselada and Marrink

is subject to large errors due to the small free energy differences involved. As of yet, no

experimental observation has placed limits on the magnitude of γ which might distinguish

between our values of γ and those of Risselada and Marrink. As shown in section 3.6, the

characteristic width of the fluctuating mismatch region depends only weakly on γ, so a

value as small as 0.01 kBT/nm2 still would not lead to fluctuations visible to the optical

microscope.

3.8 Calculation of Grand Canonical Interleaflet Coupling

Because our calculated values of the canonical interleaflet coupling γ are a factor of ten

smaller than previous estimates, we have also estimated the grand canonical interleaflet
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Tie-line γ (kBT/nm2)

A 0.032

B 0.025

C 0.016

D 0.013

Table 3.2: Calculated values of the canonical interleaflet coupling γ, for four tie-lines labeled
in Figure 3.10.

coupling γgc defined in section 3.4 as an independent estimate of the magnitude of the in-

terleaflet coupling. As explained in section 3.4, the grand canonical interleaflet coupling is

equal to the surface tension α (or equivalently, the grand potential per unit area) of the

asymmetric bilayer whose leaflets have compositions close to those of the symmetric liquid-

ordered and -disordered phases, subject to the constraint that the chemical potentials of

all molecular species are equal to those in the coexisting symmetric phases. The com-

puter program of Uline et al. [141] calculates Helmholtz free energies of bilayers of specified

composition, rather than at specified chemical potentials. The grand canonical interleaflet

coupling can nevertheless be calculated starting from a bilayer whose state is close to that of

the desired one. Specifically, we consider an asymmetric bilayer (which we call our “guess”)

whose leaflets have exactly the compositions of the two coexisting symmetric phases. Be-

cause of the interleaflet coupling, the chemical potentials of molecules in this bilayer are

shifted by a small amount δµi compared to those occurring in coexistence:

δµi ≡ µi,guess − µi,coex (3.44)

The grand canonical interleaflet coupling can now be estimated as follows:

γgc ≡ α(µi,coex) ≈ α(µi,guess)−
∑
i

(
∂α

∂µi
) · δµi

= α(µi,guess) +
∑
i

ρi · δµi (3.45)
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Here ρi is the areal density of component i and we have used ∂α/∂µi = −ρi, which can be

seen from the fact that the grand potential is the Legendre transform of the Helmholtz free

energy with respect to particle numbers. Equation (3.45) allows us to estimate γgc start-

ing from an asymmetric membrane with compositions given by the coexisting phases (our

“initial guess”). The chemical potential shifts δµi are calculated numerically by evaluating

the free energy at different mole fractions; equations relating derivatives of the Helmholtz

free energy to chemical potentials are given in Appendix A. The areal densities ρi as well

as the surface tension of the “initial guess” state can be calculated from the dependence of

the Helmholtz free energy on molecular area a.

We have performed the calculation of γgc described above at T = 290 K for a tie-line

with compositions close to those of the tie-line labeled A in Figure 3.10, namely s = 0.21

and c = 0.27 in the Ld phase and s = 0.3 and c = 0.48 in the Lo phase. We obtained

the result γgc = 0.013 kBT/nm2, which is of the same order of magnitude as our calculated

values of the canonical interleaflet coupling γ. This confirms that the model of Elliott et

al. [36] predicts an interleaflet coupling with order of magnitude 0.01kBT/nm2 rather than

≈ 0.1kBT/nm2 as obtained by Risselada and Marrink [123].
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Chapter 4

ELECTROSTATIC EFFECTS AND THE INNER LEAFLET OF THE
PLASMA MEMBRANE

4.1 Phase Behavior of Charged Mixtures

Motivated both by the biological fact that the inner leaflet of the plasma membrane con-

tains significant quantities of lipids with charged head groups [142, 70] and by experiments

performed on model lipid bilayers including charged lipids [150], we discuss in this section

the influence of electric charges on the miscibility phase behavior of mixtures, both with

and without screening induced by salt in the aqueous solvent. It is intuitively clear that the

electrostatic energy due to the presence of electric charges or dipoles favors mixing rather

than phase separation. In a mixture of molecules of opposite charge, for example, macro-

scopic phase separation is equivalent to large-scale separation of charge, which costs a great

deal of energy. In the absence of any screening mechanism, this energy cost precludes the

possibility of macroscopic phase separation. This can be seen by calculating the electro-

static energy of a two-dimensional binary mixture of oppositely charged molecules. For the

sake of simplicity we suppose that the mixture is incompressible and that two constituents

are completely immiscible, forming regions of areal charge density σ0 and −σ0. If the char-

acteristic size of these regions is L, then by dimensional considerations the electrostatic

contribution to the areal energy density must be of order

Fel

L2
∝ σ2

0 · L
ε0

(4.1)

An important consequence is that in the absence of screening the electrostatic free energy

is not extensive, since its density diverges as L → ∞. This result implies that macro-

scopic phase separation is impossible. Instead, the mixture develops domains of a finite

size determined by the competition between short-range intermolecular interactions favor-

ing immiscibility and electrostatic interactions favoring mixing. If the two components of

the mixture are highly immiscible, they will make contact only along well-defined linear
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boundaries, and we can model the contribution of short-range molecular interactions using

a “line tension” τ . The length of interface contained in an area L2 is proportional to L

regardless of the morphology of the domains, so the short-range interactions make a contri-

bution of order τ/L to the free energy density. Balancing this free energy density against

the electrostatic contribution of equation (4.1), we obtain the characteristic size of domains

in the absence of screening [135, 102]:

L0 =
√
τε

σ0
(4.2)

Finite domains also occur in mixtures of molecules with opposite dipole moments rather

than electric charges [3]. A common theme in physics is that the competition between short-

range attractions and long-range repulsions leads to structures of a finite characteristic size

[148]. This competition leads, for example, to finite domains in ferromagnets [48] and in

monolayers of polar lipids [92], and to structured phases of two-dimensional electron systems

[66].

In the cellular cytoplasm electrostatic interactions are not long-range but rather are

heavily screened by high concentrations of salt ions, which introduce a new length scale into

the problem: the Debye screening length κ−1 which characterizes the exponential decay of

the electrostatic potential. In the case of the cellular cytoplasm, concentrations of salt ions

are relatively high and κ−1 ≈ 1 nm. A finite screening length occurs even in pure water due

to the presence of hydrogen and hydroxide ions. However, electrostatic interactions still

prevent macroscopic phase separation as long as the salt concentration is small enough so

that the length scale L0 defined in equation (4.2) is much smaller than the Debye screening

length. Interestingly, the transition from finite domains of characteristic size L0 to macro-

scopic phase separation is of first order. As shown by Solis et al. [135], the characteristic

domain size jumps from a finite value of order L0 to infinity when the Debye screening

length reaches a threshold of order L0.

In this discussion we have only dealt with the regime of strong segregation, that is, the

case where the intermolecular interactions favoring phase separation are so strong that the

the constituents of the mixture segregate completely, whether into finite or macroscopic

regions. Electrostatic interactions have similar effects in the opposite limit [3], when the
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compositional order parameter only varies slightly between different regions, as is the case

near a miscibility critical point.

4.2 Electrostatic Effect on Phase Behavior in Model Membranes

In the previous section we discussed the influence of electrostatic interactions on the phase

behavior of mixtures involving charged molecules. These interactions may also influence the

gel-liquid phase transition of a bilayer composed of a single lipid component, due to the fact

that the gel and liquid phases have different thicknesses and areal densities. The influence

of the electrostatic free energy on the gel-liquid phase temperature has been calculated by

Jähnig [65] and observed experimentally by Träuble et al. [140]; see also [58]. Because the

liquid-ordered and liquid-disordered phases also differ in thickness and areal density, the

influence of electrostatic interactions via this mechanism should also be seen in the phase

diagram of lipid mixtures in which one of the components is charged. In order to estimate

this influence, we use a simplified version of the phenomenological model [117] of ternary

model membranes discussed in Section 2.1. This simplified model is set out in Appendix D.

It describes a mixture of unsaturated lipids and cholesterol as well as saturated lipids which

can exist in one of two configurational states, the ordered state (with mole fraction so) and

the disordered state (with mole fraction sd). The physical assumptions of the model are

as described in Section 2.1: there is a repulsion between unsaturated lipids and saturated

lipids, which is greater for ordered saturated lipids than for disordered ones. Also as in the

previous model, cholesterol tends to order the saturated lipids via an attractive interaction

with ordered saturated lipids. Like the model described in Section 2.1, this model yields a

phase diagram with a closed-loop miscibility gap shown in black in Figure 4.1.

We now consider the effect on this phase diagram of electrostatic interactions. If some

of the lipids are charged, leading to an areal charge density σ on each of the surfaces of the

bilayer, there is an electrostatic contribution to the free energy per molecule that can be

calculated easily from the linearized Poisson-Boltzmann equation:

Fel

kBTN
=

3
4
· σ2a

kBTεWκ
, (4.3)

where a is the area per molecule, which is the total area divided by the total number of
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Figure 4.1: Phase diagram of ternary mixture with charged unsaturated lipids. The border
of the two-phase region in the absence of charges is shown in black, while the smaller region
of coexistence in the presence of charged unsaturated lipids is shown in red for Jel = 0.1.
The other parameters of the model are Jd = 1.6, Jo = 2.2, Jsc = 4.5, ao/au = 2/3, and
ad/au = ac/au = 1 (see Appendix D).

molecules in both leaflets. We assume that the head groups of the unsaturated lipids are

charged, as in the experiment of Vequi-Suplicy et al. [150]. In this case the charge density

is determined by the mole fraction of unsaturated lipids, each of which has q elementary

charges:

σ(s, c) = qe
1
2
· Nu

A
= qe

1
2
· Nu

N
· 1
a

= qe
1
2

(1− s− c) · 1
a

(4.4)

The factor of 1/2 is due to the fact that σ is the charge density of only one monolayer. We

must now relate the area per lipid, a, to the composition of the membrane. The simplest

way of doing this is to interpolate linearly between the different species, assuming that each

has its own natural area per molecule:

a(s, c) = (1− s− c) · au + sd · ad + so · ao + c · ac

= au

[
(1− s− c) + sd(

ad
au

) + so(
ao
au

) + c(
ac
au

)
]

(4.5)

The preferred molecular areas of each species are ao, ad, au, and ac for ordered saturated

lipids, disordered saturated lipids, unsaturated lipids, and cholesterol, respectively. Now
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that equations (4.4) and (4.5) give σ and a in terms of the mole fractions, we can substitute

these expressions into equation (4.3) to obtain the electrostatic free energy in terms of the

compositions:

Fel

kBTN
= Jel ·

(1− s− c)2

(1− s− c) + sd( ad
au

) + so( ao
au

) + c( ac
au

)
, (4.6)

where

Jel =
3
16
· q2e2

kBTεWκau
=

3
16
q2 4πlB
κau

, (4.7)

and lB is the Bjerrum length. Equation (4.6) represents a repulsion between unsaturated

lipids of like charge, which favors mixing of these molecules with the other molecular species.

The strength of this interaction depends via its denominator on the ratios of the cross-

sectional areas ad, ao, au, and ac of disordered saturated lipids, ordered saturated lipids,

unsaturated lipids, and cholesterol. The quantity Jel gives a dimensionless measure of the

importance of electrostatic interactions in determining the phase diagram of the mixture.

In Figure 4.1 the two-phase region of a mixture with charged unsaturated lipids is shown

for the dimensionless electrostatic coupling Jel = 0.1. We have also chosen the values

ao/au = 2/3, and ad/au = ac/au = 1. That is, for simplicity the “pure disordered” and

“pure cholesterol” molecular areas are taken to be the same as the molecular area of the

pure unsaturated lipid membrane, whereas the ordered membrane is taken to be thicker by

a factor of 3/2 than the pure unsaturated lipid membrane. We see that even for a small

value of the dimensionless electrostatic coupling Jel, there is a significant decrease in the

area of composition space taken up by the two-phase coexistence region. In this model

of the liquid-liquid phase behavior of ternary mixed model membranes, electric charges on

the unsaturated lipids are extremely efficient at opposing the tendency to phase-separate.

Furthermore, we expect the dimensionless coupling parameter Jel to be much larger in

conditions under which experiments have been done on such charged mixtures [150]. For

water at room temperature the Bjerrum length lB is about 0.7 nm. We take au to be

about a half a square nanometer. At physiological salt concentrations, κ−1 is of order one

nanometer, but in experiments on model membranes (which are more relevant here), it will

be much larger. Using κ−1 ≈ 1 nm and q = 1 yields Jel ≈ 3.3. According to this model, even
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at physiological salt concentrations, and certainly in experiments performed without added

salt, the electrostatic repulsion between charged lipids should abolish macroscopic phase

separation. That macroscopic liquid-liquid phase separation has been observed in model

membranes with charged lipids [150] is surprising. It may indicate that the simple theory

described above should be modified to take into account the charge regulation [16, 81] of

the lipid head groups, that is, the ability of the charged head groups to recapture their

counterions and become neutral if this leads to a sufficient reduction of the electrostatic

repulsive energy.

4.3 Effect of Charges on Concentration Fluctuations

As noted in connection with the interleaflet coupling in Chapter 3, the lipid composition

of the inner leaflet of the cell plasma membrane does not lend itself to liquid-liquid phase

separation. The experiment of Wang and Silvius [156] showed that model bilayers with com-

positions reflecting that of the inner leaflet do not undergo macroscopic phase-separation.

Therefore the discussion in the previous two sections of the effect of electric charge on phase

separation is not directly relevant to the lateral organization of the inner leaflet, except

insofar as it is coupled to the outer leaflet, which may itself contain raft domains of or-

dered saturated lipids and cholesterol. For this reason we have investigated the possibility

that the presence of charged lipids in the inner leaflet might influence, rather than the

average compositions of liquid phases and their possible coexistence, the spatial fluctua-

tions of composition in a single liquid phase whose average composition is uniform. We ask

whether the same electrostatic effects that lead to finite domain sizes in mixtures undergo-

ing phase-separation could also give rise to a characteristic length scale in the spectrum of

compositional fluctuations of charged lipids at temperatures for which macroscopic phase

separation does not occur. A cell might exploit such fluctuations to organize processes

laterally on this length scale. In this section we calculate the spectrum of compositional

fluctuations in a simple model of a charged two-dimensional binary mixture surrounded by

solvent. A more detailed analysis, including the electrostatic effect of the finite thickness of

the bilayer, shows that such effects do not change our qualitative results.

We consider a two-dimensional binary mixture described by a compositional order pa-
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rameter φ, the difference between the mole fractions of its components. We assume that

the temperature is such that a single phase of uniform average composition is stable. Since

we are interested in spatial fluctuations of the composition, we consider the free energy as

a functional of an order parameter field φ(x, y) which varies in space. Here the x and y di-

rections span the surface of the bilayer, while the z direction is normal to it. We choose the

following functional to describe the intermolecular interactions not including electrostatics:

F0 [φ(x, y)]
N

= A−1 ·
∫ [

aφ2(x, y) + b(∇φ(x, y))2
]
dxdy, (4.8)

where A is the area of the charged mixture. The first term describes the effect of mixing

entropy as well as short-range intermolecular interactions. Since we assume the temperature

to be higher than the miscibility critical temperature, a > 0. The second term represents

an energetic penalty for spatial variations of the order parameter. Such a term exists (with

b > 0) as long as there are short-range repulsions between different molecular species, even

when these are not strong enough to lead to phase separation. This free energy functional

is conveniently expressed in terms of the Fourier modes of the order parameter

φ(x) =
∑
q

φq exp(iqx), (4.9)

as
F0[φq]
N

=
∑
q

(a+ bq2)|φq|2, (4.10)

where since φ(x) is real φ∗q = φ−q. The free energy contribution of the electrostatic interac-

tions between molecules can be added by defining the charge density

σ(x) = pe · N
A
≡ σ0 · φ(x) (4.11)

where σ0 = peN/A is defined to be the maximum charge density, that is, the charge density

of the mixture when φ = 1. Because of the linearity of the linearized Poisson-Boltzmann

(Debye-Hückel) equation

∇2V = κ2V (4.12)

the potential Vq due to each Fourier mode σ0 · φq exp(iqx) of the charge density can be

calculated separately. The solution to equation (4.12) satisfying the appropriate boundary
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conditions is

V = Vq · exp(iqx), where (4.13)

Vq =
σ0φq
2εW

· exp(−κ′|z|)
κ′

(4.14)

κ′2 = κ2 + q2 (4.15)

The total potential is then

V =
∑
q

Vq exp(iqx) (4.16)

The total electrostatic free energy includes the electrostatic energy of the surface charge

and the ions in solution, as well as the entropy of the ions:

Fel =
1
2

∫
V (x, z = 0)σ(x)dxdy +

1
2

∫
V (r)(eρ+(r)− eρ−(r))d3r

+kBT
∫

[ρ+(r) ln(ρ+(r)) + ρ−(r) ln(ρ−(r))] d3r, (4.17)

where ρ+(r) and ρ−(r) are number densities of positive and negative ions in solution. We

assume that these obey the Boltzmann distribution:

ρ+(r) = ρ0 exp(−βeV (r)) (4.18)

ρ−(r) = ρ0 exp(βeV (r)) (4.19)

Here ρ0 is the bulk (V = 0) density of both positive and negative ions in the solution. Thus

the entropy term is

−TS = kBT

∫
[ρ+(r) ln(ρ+(r)) + ρ−(r) ln(ρ−(r))] d3r (4.20)

= kBT

∫
[ρ+(r) ln(ρ0) + ρ−(r) ln(ρ0)] d3r

+ kBT

∫
[−ρ+(r)βeV (r) + ρ−(r)βeV (r)] d3r (4.21)

The first term is constant since the total number of ions does not change. The second term

is twice the electrostatic energy of the ions, but of opposite sign. So the total electrostatic

energy becomes

Fel =
1
2

∫
V (x, z = 0)σ(x)dxdy − 1

2

∫
V (r)ρ(r)d3r, (4.22)
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where ρ(r) is now the total charge (not number) density of ions in solution. Note that

taking into account the entropy of the ions introduces the minus sign in the second term.

The second term of equation (4.22) can be written in terms of the potential using the

Poisson equation and the Debye-Hückel equation:

ρ = −εW∇2V = −εWκ2V (4.23)

After a few more steps, the electrostatic contribution to the free energy can be written in

the form

Fel

N
= α ·

∑
q

|φq|2
[

1
κ′

+
1
2
· κ

2

κ′3

]
, (4.24)

where the quantity α determines the relative importance of the electrostatic contribution

to the free energy:

α ≡ 1
4
· p

2e2

εW
· N
A

(4.25)

We can then consider the total free energy functional, including the electrostatic contribu-

tion:

F

N
=
∑
q

|φq|2
[
a+ bq2 + α(

1
κ′

+
1
2
· κ

2

κ′3
)
]

︸ ︷︷ ︸
fq

, (4.26)

where again κ′2 = κ2 + q2. The expression in square brackets is fq, the free energy cost of a

compositional fluctuation with wavevector q. It determines, via the equipartition theorem,

the strength of these fluctuations in thermal equilibrium:

〈|φq|2〉 ∝
kBT

fq
(4.27)

We note first that the electrostatic contribution to equation (4.26), proportional to α, is

always positive. This means that compositional fluctuations of all wavenumbers are sup-

pressed by electrostatic interactions. Just as electrostatic interactions favor mixing and thus

suppress macroscopic phase separation (which corresponds to a fluctuation with q = 0), they

also suppress fluctuations of finite spatial extent.
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However, it is clear from the fact that fq depends on q that compositional fluctuations

with different wavenumbers will be suppressed to different extents. Thus, one may wonder

whether the presence of charged molecules in a mixture leads to a “preferred” size of fluctu-

ations in composition. The simple model just described predicts such a characteristic length

as long as the relative strength of the electrostatic interactions is large enough, as given by

the dimensionless quantity α/κ3b. This is illustrated in Figure 4.2, where a dimensionless

quantity proportional to f−1
q is plotted as a function of the dimensionless scaled wavenumber

q/κ, for a = bκ2 and for two values of the dimensionless electrostatic interaction strength

α/κ3b. The quantity plotted gives an indication of the strength of fluctuations of various

wavenumbers. It can be seen that for α/κ3b = 2.5 (dashed line) f−1
q has a local maximum at

nonzero q, indicating that there is a characteristic wavelength of the fluctuations, whereas

at a lower value α/κ3b = 0.5, the function f−1
q decreases monotonically. It is easy to show

0 2 4 6 8 10 q�Κ

0.2

0.4

0.6

0.8

a� fq

Figure 4.2: Dimensionless strength of composition fluctuations, proportional to the inverse
of fq, as a function of the dimensionless wavenumber, q/κ. Values of the parameters of the
free energy are aκ−1 = bκ = 1. Values of α are 0.5 (solid) and 2.5 (dashed).

that the condition for the existence of the local maximum in f−1
q is

α >
4
5
κ3b, (4.28)
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or, using the definition (4.25) of α and the Bjerrum length lB = βe2/4πεW ,

p2 · kBT lB
κ3b

· N
A
> 0.25 . . . (4.29)

It is easy to obtain estimates for the quantities involved in this inequality under phys-

iologically relevant conditions, with the exception of the coefficient b introduced in the

square-gradient term in equation (4.8). If we assume that each lipid has an elementary

charge (p = 1) and a cross-sectional area of 0.5 nm2, a temperature of 300 K, a Bjerrum

length in water of 0.7 nm, and a Debye screening length of κ−1 = 1 nm, then the inequality

becomes b < 5.6 kBT nm2. Since the coefficient b of the square-gradient term in the free

energy functional (4.8) is proportional [125] to the strength of the interactions between

neighboring molecules, this inequality tells us that the compositional fluctuations will have

a nonzero characteristic length as long as these intermolecular interactions are sufficiently

weak. This is promising, since we know that the interactions between lipids in the inner

leaflet of the cell plasma membrane are not strong enough to lead to phase separation [156].

However, at present we have no quantitative estimate of the coefficient b.

The analysis presented above of the effect of electrostatic interactions on compositional

fluctuations made a number of simplifying assumptions. First, we have described a binary

mixture of oppositely charged molecules, whereas the plasma membrane inner leaflet is

better described as having a minority component (10 – 30 percent) of charged lipids [70].

We have also assumed that the short-range interactions between molecules are well described

in a continuum approximation by the simple free energy functional given in equation (4.8).

Finally, we have neglected the effect of the electrostatic boundary conditions at the interface

between the aqueous solvent and the lipid bilayer; this effect does not change the qualitative

behavior described above.

The effect of electrically charged lipid head groups on the compositional fluctuations in

the inner leaflet of the cell plasma membrane can be more accurately investigated via a

lattice Monte Carlo simulation in which both short-range intermolecular interactions and

electrostatic interactions (mediated by salt in the solvent) are taken into account explicitly.

Such an approach does not involve a continuum approximation of the local composition

of the mixture, and so should accurately reflect composition fluctuations on small length
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scales of the order of the average distance between charged lipids. As a first step toward

performing such simulations, we have calculated the effective electrostatic interaction be-

tween two charged lipid head groups at the interface between the bilayer and the aqueous

solvent. This interaction, which will be included in the lattice MC simulations, is mediated

by the interactions of these charges with the salt ions in the solvent; both the electrostatic

energy and the translational entropy of the ions is taken into account. The calculation of

the effective electrostatic interaction is summarized in the next section and described in

more detail in Appendix C.

4.4 Effective Electrostatic Potential between Charged Lipids

Figure 4.3 shows schematically a lipid bilayer of thickness d immersed in an aqueous solution

containing salt. The solution has relative dielectric constant εW = 80, while that of the

interior of the bilayer is εB ≈ 2, close to that of oil. The salt in the solution gives rise to

a Debye screening length κ−1. Lipids with charged head groups, which are considered to

exist in only one leaflet of the bilayer, are modeled as point charges (each with n negative

elementary charges) located at the interface at z = 0 between the two dielectrics. In

ΕB

ΕW, Κ

ΕW, Κ
z#$d

z#0
-ne

-ne

-ne

-ne

Figure 4.3: Electric charges at the lipid-water interface.

Appendix C we show that in the regime where the Poisson-Boltzmann equation can be

linearized, the free energy of the system of charged lipids and the ions in solution can be

decomposed into pairwise effective interactions acting between charged lipid head groups.

The calculation of this effective potential, which includes the translational entropy of the ions

in solution as well as their electrostatic energy, is greatly facilitated by the expressions for the
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Green’s function of the linearized Poisson-Boltzmann (Debye-Hückel) equation published by

Netz [104]. Here we give the result in the limit where εB/εW ≈ 0, which is a reasonable

approximation given the values of the dielectric constants. Under this approximation, the

effective interaction between charged lipid head groups separated by a distance r within the

bilayer is

Ueff(r) =
(ne)2

4πεW
· exp(−κr)

r
· [2 + γ + exp(2κr)Γ(0, 2κr) + ln(2κr)] , (4.30)

where γ = 0.577 . . . is the Euler-Mascheroni constant and Γ(0, x) is an incomplete gamma

function defined by

Γ(0, x) =
∫ ∞
x

exp(−t)
t

dt (4.31)

This function decays exponentially for large x. The factor outside the square brackets in

equation (4.30) is the ordinary screened Coulomb (Yukawa) potential which acts between

two charges −ne far from any dielectric interfaces:

Uo(r) =
(ne)2

4πεW
· exp(−κr)

r
(4.32)

Figure 4.4 shows as a solid line the effective potential Ueff between charges, scaled by

n2e2κ/4πεW to make it dimensionless. The screened Coulomb potential U0 is also shown as

a dashed line for comparison. The proximity of an interface between dielectrics significantly

increases the effective repulsion between charged lipid head groups. This is further shown

in Figure 4.5, which plots the ratio Ueff/U0, or equivalently the quantity in square brackets

in equation (4.30). Clearly the presence of the dielectric interface between the solvent and

the lipid bilayer has an important effect in the electrostatic interactions between charged

lipid head groups, and should be taken into account in modeling composition fluctuations

of the inner leaflet of the cell membrane.
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Figure 4.4: Effective electrostatic potential between two charged lipid headgroups. For
comparison, the ordinary screened Coulomb interaction of two charges far from any inter-
faces is shown as a dashed line. Energies are plotted in dimensionless form in terms of the
characteristic energy n2e2κ/4πεW .
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Figure 4.5: Plot of Ueff/U0, which is the factor by which the electrostatic repulsion between
charged lipid head groups is enhanced compared to the screened Coulomb repulsion far from
dielectric interfaces.
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Chapter 5

QUESTIONS AND FUTURE RESEARCH DIRECTIONS

We conclude this thesis by discussing two questions related to lipid rafts in the cell plasma

membrane and to the related phenomenon of liquid-liquid phase separation in model lipid

bilayers composed of a mixture of high and low melting temperature lipids as well as choles-

terol. Both of these questions can be posed as challenges to the current conception lipid rafts

as nanoscale domains of the liquid-ordered phase. Firstly, what prevents these nanometer-

scale domains from merging together into larger, eventually macroscopic domains? We list

a number of explanations for the finite size of lipid rafts. Secondly, if the existence of lipids

rafts is driven by interactions between molecules of the plasma membrane outer leaflet,

what effects do the rafts have on the state of the inner leaflet? A complete answer to this

question will require systematic study of the phase behavior of bilayers with asymmetric

compositions.

5.1 The Size of Lipid Rafts

Assuming that the intermolecular interactions responsible for the existence of lipid rafts are

the same as those that drive liquid-liquid phase separation in model membranes raises the

question of why macroscopic liquid-ordered or liquid-disordered domains are not visible in

cell plasma membranes. Here we review a number of mechanisms which have been proposed

to explain why lipid rafts are limited to sizes below optical resolution.

The cell membrane is commonly viewed, to first approximation, as a bilayer composed

of lipids including cholesterol. However, the cell plasma membrane contains large amounts

of protein. For example, proteins occupy roughly 20 percent of the area of the plasma

membranes of red blood cells [30]. Yethiraj and Weisshaar [157] suggested that the integral

membrane proteins which anchor the cell cytoskeleton to the plasma membrane act as fixed

impurities which prevent large-scale phase separation.
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A key difference between living cells and model membranes is that the latter are typically

studied in thermodynamic equilibrium, while the former are decidedly out of equilibrium.

In particular, the lipids composing the cell plasma membrane are continually being recycled

through metabolic processes [142] requiring energy input. Thus even if the average lipid

composition of the cell membrane lends itself to phase separation, it is plausible that lipid

transport and metabolism keep the plasma membrane lipids well-mixed, preventing the

formation of large-scale domains. Fan et al. [39] studied the dynamics of a mixture which

would phase separate if left to equilibrate, but which is prevented from doing so by a

continuous transport process ensuring that the mixture is uniform on large length scales.

They argued that, like this system, the cell membrane could have a non-equilibrium steady

state characterized by finite-sized liquid domains.

An intriguing possibility is that lipid rafts, rather than being liquid-ordered domains

limited to a finite size by some mechanism, are compositional fluctuations of a mixture

near a miscibility critical point [60]. Honerkamp-Smith et al. [59] measured the correlation

length in a ternary model membrane capable of liquid-liquid phase separation, and used

critical scaling to argue that at temperatures a few degrees above the critical temperature,

compositional fluctuations with sizes of tens of nanometers could be expected. Surprisingly,

critical fluctuations have been observed in giant plasma membrane vesicles or “blebs” ex-

tracted directly from cell plasma membranes [146], suggesting the possibility that cells tune

the lipid compositions of their plasma membranes in order to exploit these fluctuations.

A number of other mechanisms have been proposed to explain the finite size of lipid

rafts, beyond those just mentioned. Kuzmin et al. [73] calculated the contribution of elastic

deformation energy to the line tension of the liquid-liquid phase boundary, and found it

to be so small that domain coalescence driven by this contribution only would proceed ex-

tremely slowly, leading to an effective finite size of domains. However, the most important

contribution to the line tension is likely due not to elastic deformation energy, but rather

to the same molecular interactions which drive phase separation; this can not be negligibly

small if phase coexistence is in fact observed in model membranes. Frolov et al. [47] note

that coalescence of small domains, while energetically favored due to the line tension, is en-

tropically disfavored. They argued that a competition between energy and entropy results
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in a finite domain size. Recently, Brewster et al. [12] suggested that hybrid lipids, which

have one saturated and one unsaturated acyl chain, might stabilize liquid domains of finite

size by preferentially partitioning to the domain interface. This mechanism is similar to that

of Kuzmin et al. [73] in that it involves a reduction of line tension, which is the driving force

of domain coalescence. It is difficult to reconcile these proposed mechanisms with the ob-

servation of liquid-liquid phase separation in “blebs” extracted from cell plasma membranes

[8, 146]. This observation suggests that the mechanism preventing domain coalescence in

cell membranes is not intrinsic to the lipid or protein composition of the membrane, but is

rather due to external influences such as the cytoskeleton [157], nonequilibrium transport

processes [39], or both.

5.2 The Phase Behavior of Asymmetric Mixed Bilayers

The observation of liquid-liquid phase coexistence in model membranes with compositions

reflecting that of the plasma membrane outer leaflet [28] but not in those mimicking the

composition of the inner leaflet [156] raised the following question: Can lipid rafts still be

viable platforms for transmembrane signaling [132, 26]? That is, can a lipid raft residing

in the outer leaflet influence transmembrane signaling processes by including or excluding

membrane-bound proteins known to be involved in those processes? A relevant question in

the context of model membranes is: under what conditions does an asymmetric bilayer with

given compositions in each leaflet undergo phase separation? Collins and Keller [18] have

shown experimentally that a bilayer in which one leaflet has an intrinsic tendency toward

phase separation, but the other does not, can either phase-separate or not depending on

the precise compositions of the leaflets. A complete answer to the question above therefore

requires a systematic study of the phase diagram of an asymmetric bilayer. Given the dif-

ficulty of preparing bilayers with known asymmetric compositions, or of mapping out the

phase diagram of a symmetric ternary mixture, it does not seem feasible in the near future

for experimentalists to determine a complete phase diagram for an asymmetric bilayer. In

contrast, it is a tractable (though difficult) problem to calculate the phase diagram of an

asymmetric mixed bilayer on the basis of a model such as that of Elliott et al. [36]. Such a

calculation would provide answers to a number of other questions of biological interest. For
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example, if molecular interactions in the outer leaflet of an asymmetric bilayer drive phase

separation, how great is the difference in inner-leaflet compositions between the two phases?

Methods similar to those used to calculate partition coefficients of lipid-anchored proteins

[141] in the two liquid phases could be used to determine whether the interleaflet coupling

alone is capable of efficiently concentrating raft-associated proteins or exclude non-raft pro-

teins from liquid-ordered domains. Another interesting question that could be addressed

using such calculations is: if the relative concentrations of saturated and unsaturated lipids

are fixed in both leaflets of an asymmetric bilayer, but cholesterol is allowed to flip-flop

rapidly between leaflets, what will be the equilibrium concentrations of cholesterol in each

of the leaflets? It is clear that due to cholesterol’s different interactions with saturated and

unsaturated lipids, it will not partition equally between the leaflets. However, we do not

know a priori whether the difference in cholesterol concentration between the leaflets should

be large.

Theoretical studies of the phase behavior of compositionally asymmetric bilayers must

take into account their curvature. In general, a flat, asymmetric bilayer may lower its free

energy by curving in one direction or another; this change in free energy may have an

important effect on its phase diagram. This spontaneous curvature may even contribute

significantly to the interleaflet coupling energy [80, 138, 86]. There has been a great deal

of interest in the interplay between the curvature and compositional degrees of freedom of

lipid bilayers [111, 128]. The spontaneous curvature of asymmetric mixed membranes can be

calculated from the model of Elliott et al. [36] using the approach of Szleifer et al. [137]. This

calculation would address a number of important questions: Based on its asymmetric lipid

composition, how great is the cell plasma membrane’s tendency to curve? Does this have

a significant effect on its ability to phase-separate? Could the composition dependence of

the spontaneous curvature make a significant contribution to the interleaflet coupling, thus

accounting for the discrepancy between our estimate of this quantity and that of Risselada

and Marrink? We hope that these questions and others will motivate further research in

this area.



78

BIBLIOGRAPHY

[1] D.W. Allender and M. Schick. Phase separation in bilayer lipid membranes: Effects
on the inner leaf due to coupling to the outer leaf. Biophys. J., 91:2828–2935, 2006.

[2] D. Andelman. Handbook of Biological Physics, volume 1, chapter 12. North-Holland,
Amsterdam, 1995.

[3] D. Andelman, F. Brochard, and J. Joanny. Phase transitions in Langmuir monolayers
of polar molecules. J. Chem. Phys., 86:3673–3681, 1987.

[4] C. L. Baciu and S. May. Stability of charged, mixed lipid bilayers: effect of electrostatic
coupling between the monolayers. J. Phys.: Condens. Matter, 16:S2455–S2460, 2004.

[5] C.B. Barber and H. Huhdanpaa. qhull version 2010.1. http://www.qhull.org.

[6] P. Barham. The Science of Cooking. Springer, New York, 2000.

[7] P.G. Barton and F.D. Gunstone. Hydrocarbon chain packing and molecular motion
in phospholipid bilayers formed from unsaturated lecithins. J. Biol. Chem., 250:4470–
4476, 1975.

[8] T. Baumgart, A.T. Hammond, P. Sengupta, S. T. Hess, D.A. Holowka, B.A. Baird,
and W.W. Webb. Large-scale fluid/fluid phase separation of proteins and lipids in
giant plasma membrane vesicles. PNAS, 104:3165–3170, 2007.

[9] T. Baumgart, S.T. Hess, and W.W. Webb. Imaging coexisting fluid domains in
biomembrane models coupling curvature and line tension. Nature, 425:821–824, 2003.

[10] A. Ben-Shaul and I. Szleifer. Chain organization and thermodynamics in micelles and
bilayers. I. Theory. J. Chem. Phys., 83:3597–3610, 1985.

[11] M.L. Berkowitz. Detailed molecular dynamics simulations of model biological mem-
branes containing cholesterol. Biochim. Biophys. Acta, 1788:86–96, 2009.

[12] R. Brewster, P.A. Pincus, and S.A. Safran. Hybrid lipids as a biological surface-active
component. Biophys. J., 97:1087–1094, 2009.

[13] D.A. Brown and E. London. Functions of lipid rafts in biological membranes. Annu.
Rev. Cell Dev. Biol., 14:111–136, 1998.



79

[14] D.A. Brown and J.K. Rose. Sorting of GPI-anchored proteins to glycolipid-enriched
membrane subdomains during transport to the apical cell surface. Cell, 68:533–544,
1992.

[15] R.J. Bruckner, S.S. Mansy, A. Ricardo, L. Mahadevan, and J.W. Szostak. Flip-
flop induced relaxation of bending energy: Implications for membrane remodeling.
Biophys. J., 97:3113–3122, 2009.

[16] S.L. Carnie and D.Y.C. Chan. Interaction free energy between plates with charge
regulation: A linearized model. J. Colloid and Interface Sci., 161:260–264, 1993.

[17] M.D. Collins. Interleaflet coupling mechanisms in bilayers of lipids and cholesterol.
Biophys. J., 94:L32–L34, 2008.

[18] M.D. Collins and S.L. Keller. Tuning lipid mixtures to induce or suppress domain
formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci.
USA, 105:124–128, 2008.

[19] W. Curatolo, B. Sears, and L.J. Neuringer. A calorimetry and deuterium NMR study
of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated
phosphatidylcholines. Biochim. Biophys. Acta, 817:261–270, 1985.

[20] J.H. Davis, J.J. Clair, and J. Juhasz. Phase equilibria in DOPC/DPPC-d62/cholesterol
mixtures. Biophys. J., 96:521–539, 2009.

[21] R. de Almeida, A. Fedorov, and M. Prieto. Sphingomyelin/ phosphatidylcholine/
cholesterol phase diagram: Boundaries and composition of lipid rafts. Biophys. J.,
85:2406–2416, 2003.

[22] P.G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press,
Ithaca, NY, 1979.

[23] P.G. de Gennes. Superconductivity of Metals and Alloys. Westview Press, Boulder,
CO, 1999.

[24] P.G. de Gennes and J. Prost. The Physics of Liquid Crystals. Oxford University
Press, Oxford, 1995.

[25] M. den Nijs. Phase Transitions and Critical Phenomena, volume 12, chapter 2. Aca-
demic Press, New York, 1988.

[26] P. F. Devaux and R. Morris. Transmembrane asymmetry and lateral domains in
biological membranes. Traffic, 5:241–246, 2004.



80

[27] P.F. Devaux, A. Herrmann, N. Ohlwein, and M. M. Kozlov. How lipid flippases can
modulate membrane structure. Biochim. Biophys. Acta, 1778:1591–1600, 2008.

[28] C. Dietrich, L.A. Bagatolli, Z.N. Volovyk, N.L. Thompson, M. Levi, K. Jacobson, and
E. Gratton. Lipid rafts reconstituted in model membranes. Biophys. J., 80:1417–1428,
2001.

[29] K.A. Dill and D. Stigter. Lateral interactions among phosphatidylcholine and phos-
phatidylethanolamine head groups in phospholipid monolayers and bilayers. Biochem.,
27:3446–3453, 1988.

[30] A.D. Dupuy and D.M. Engelman. Protein area occupancy at the center of the red
blood cell membrane. PNAS, 105:2848–2852, 2008.

[31] D. Duque, X. Li, K. Katsov, and M. Schick. Molecular theory of hydrophobic mis-
match between lipids and peptides. J. Chem. Phys., 116:10478–10484, 2002.

[32] H. Ebel, P. Grabitz, and T. Heimburg. Enthalpy and volume changes in lipid mem-
branes. I. The proportionality of heat and volume changes in the lipid melting tran-
sition and its implication for the elastic constants. J. Phys. Chem. B, 105:7353–7360,
2001.

[33] M. Edidin. The state of lipid rafts: From model membranes to cells. Annu. Rev.
Biophys. Biomol. Struct., 32:257–283, 2003.

[34] R. Elliott. Phase Separation in Mixed Bilayers containing Saturated and Mono-
unsaturated Lipids with Cholesterol as determined from a Microscopic Model. PhD
thesis, University of Washington, Seattle, 2005.

[35] R. Elliott, K. Katsov, M. Schick, and I. Szleifer. Phase separation of saturated and
mono-unsaturated lipids as determined from a microscopic model. J. Chem. Phys.,
122:044094, 2005.

[36] R. Elliott, I. Szleifer, and M. Schick. Phase diagram of a ternary mixture of cholesterol
and saturated and unsaturated lipids calculated from a microscopic model. Phys. Rev.
Lett., 96:098101, 2006.
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[65] F. Jähnig. Electrostatic free energy and shift of the phase transition for charged lipid
membranes. Biophys. Chem., 4:309–318, 1976.

[66] R. Jamei, S. Kivelson, and B. Spivak. Universal aspects of coulomb-frustrated phase
separation. Phys. Rev. Lett., 94:056805, 2005.

[67] M.J. Karnovsky, A.M. Kleinfeld, R.L. Hoover, and R.D. Klausner. The concept of
lipid domains in membranes. J. Cell Bio., 94:1–6, 1982.

[68] S.L. Keller, A. Radhakrishnan, and H.M. McConnell. Saturated phospholipids with
high melting temperatures form complexes with cholesterol in monolayers. J. Phys.
Chem. B, 104:7522–7527, 2000.

[69] V. Kiessling, J.M. Crane, and L.K. Tamm. Transbilayer effects of raft-like lipid do-
mains in asymmetric planar bilayers measured by single molecule tracking. Biophys.
J., 91:3313–3326, 2006.

[70] V. Kiessling, C. Wan, and L. K. Tamm. Domain coupling in asymmetric lipid bilayers.
Biochim. Biophys. Acta, 1788:64–71, 2009.

[71] S. Komura, H. Shirotori, and P.D. Olmsted. Phase behaviour of three-component
lipid mixtures. J. Phys.L Condens. Matter, 17:S2951–S2956, 2005.

[72] S. Komura, H. Shirotori, P.D. Olmsted, and D. Andelman. Lateral phase separation
in mixtures of lipids and cholesterol. Europhys. Lett., 67:321–327, 2004.

[73] P.I. Kuzmin, S. A. Akimov, Yu. A. Chizmadzhev, J. Zimmerberg, and F.S. Cohen.
Line tension and interaction energies of membrane rafts calculated from lipid splay
and tilt. Biophys. J., 88:1120–1133, 2005.

[74] D.P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical
Physics. Cambridge University Press, Cambridge, 2000.

[75] L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii. Electrodynamics of Continuous Me-
dia. Butterworth-Heinemann, New York, 2007.

[76] J.B. Leathes. Condensing effect of cholesterol on monolayers. Lancet, 208:853–856,
1925.

[77] J-Y. Lee and M. Schick. Dependence of the energies of fusion on the intermembrane
separation: optimal and constrained. J. Chem. Phys., 127:075102, 2007.

[78] F.A.M. Leermakers and A.L. Rabinovich. Interaction of cholesterol-like molecules
in polyunsaturated phosphatidylcholine lipid bilayers as revealed by a self-consistent
field theory. Phys. Rev. E, 76:031904, 2007.



84

[79] F.A.M. Leermakers and J.M.H.M. Scheutjens. Statistical thermodynamics of associ-
ation colloids. I. Lipid bilayer membranes. J. Chem. Phys., 89:3264–3274, 1988.

[80] S. Leibler and D. Andelman. Ordered and curved meso-structures in membranes and
amphiphilic films. J. Physique, 48:2013–2018, 1987.

[81] X. Li and M. Schick. Theory of tunable pH-sensitive vesicles of anionic and cationic
lipids or anionic and neutral lipids. Biophys. J., 80:1703–1711, 2001.

[82] X. Li and M. Schick. Distribution of lipids in nonlamellar phases of their mixtures.
J. Chem. Phys., 112:6063–6072, 2002.

[83] D. Lingwood and K. Simons. Lipid rafts as a membrane-organizing principle. Science,
327:46–50, 2010.

[84] A.P. Liu and D.A. Fletcher. Actin polymerization serves as a membrane domain
switch in model lipid bilayers. Biophys. J., 91:4064–4070, 2006.

[85] G.S. Longo, M. Schick, and I. Szleifer. Stability and liquid-liquid phase separation in
mixed saturated lipids bilayers. Biophys. J., 96:3977–3986, 2009.

[86] F.C. MacKintosh. Mixed fluid bilayers: Effects of confinement. Phys. Rev. E, 50:2891–
2897, 1994.
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Appendix A

THERMODYNAMICS OF MIXED BILAYERS

In this appendix we derive basic thermodynamics relations for a mixed lipid bilayer

composed of saturated lipids, unsaturated lipids, and cholesterol. These tell us, for example,

how the derivatives of the Helmholtz free energy per molecule f are related to physical

quantities such as chemical potentials and surface tensions.

We consider a lipid bilayer of area A composed of a mixture of saturated lipids, unsat-

urated lipids, and cholesterol. From the area A and the total number of molecules N we

define the area per molecule a:

a ≡ A

N
(A.1)

The bilayer is made up of an “inner” leaflet and an “outer” one. Strictly speaking, in

thermodynamic equilibrium the leaflets will have the same composition. We assume that

the flip-flop process by which the leaflet compositions become identical is slow enough that

we may reasonably speak of an asymmetric bilayer in thermodynamic equilbrium. The total

numbers of molecules in the inner and outer leaflets are Nin and Nout, respectively. The

fraction of the total molecules N in the bilayer which reside in the inner leaflet is given by

η ≡ Nin

N
(A.2)

We are assuming that the area accessible to lipids in both leaflets is the same (A); physically

this corresponds to the assumption that the bilayer is flat rather than curved. The number of

saturated lipids, unsaturated lipids, and cholesterol in the inner leaflet are Ns,in, Nu,in, and

Nc,in; likewise for the outer leaflet. The composition of the bilayer is completely specified

by η as well as the mole fractions

sin ≡ Ns,in

Nin
cin ≡

Nc,in

Nin

sout ≡
Ns,out

Nout
cout ≡

Nc,out

Nout
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Note that only two mole fractions are needed to describe the composition of each leaflet,

since for example uin = 1− sin − cin.

The thermodynamic potential appropriate to a system with fixed composition (number

of each molecular species) and temperature is determined by the Helmholtz free energy

F (T, {Ni}, A). Here the notation {Ni} denotes the numbers of each molecular species,

with molecules in different leaflets considered to be different species. The Helmholtz free

energy determines the equilibrium thermodynamic behavior of the system via the first law

of thermodynamics:

dF = −SdT +
∑
i

µidNi + α · dA (A.3)

and the second law:

dF = 0 (A.4)

We have used α to denote the surface tension (the two-dimensional equivalent of pressure)

rather than the more traditional γ, since we use the latter for the interleaflet coupling

throughout the text. In a spatially homogeneous system, equation A.3 can be integrated to

yield the thermodynamic Euler relation

F = −ST +
∑
i

µiNi + α ·A (A.5)

The free energy calculations described in the text make no reference to extensive quanti-

ties such as F , but rather to intensive quantities only. We define the Helmholtz free energy

per molecule f by

f ≡ F

N
(A.6)

The fundamental thermodynamic relation involving the Helmholtz free energy per molecule

can be obtained by substituting into equation A.3 the relations A = aN , Ns,in = ηsinN and
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so on. After simplification, the result has the form dF = fdN +Ndf , where

df = {(µs,in − µu,in)sin + (µc,in − µu,in)cin

− (µs,out − µu,out)sout − (µc,out − µu,out)cout + (µu,in − µu,out)}dη

+ (µs,in − µu,in)ηdsin + (µc,in − µu,in)ηdcin

+ (µs,out − µu,out)(1− η)dsout + (µc,out − µu,out)(1− η)dcout

+ α · da (A.7)

and

f = (µs,in − µu,in)ηsin + (µc,int − µu,in)ηcin

+ (µs,out − µu,out)(1− η)sout + (µc,out − µu,out)(1− η)cout

+ ηµu,in + (1− η)µu,out + α · a (A.8)

Here we have assumed that dT = 0. From equation A.7 we may read off the derivatives of

f(T, sin, cin, sout, cout, η, a) for a given temperature.

∂f

∂sin
= η(µs,in − µu,in),

∂f

∂cin
= η(µc,in − µu,in)

∂f

∂sout
= (1− η)(µs,out − µu,out),

∂f

∂cout
= (1− η)(µc,out − µu,out)

∂f

∂η
= (µs,in − µu,in)sin + (µc,in − µu,in)cin

− (µs,out − µu,out)sout − (µc,out − µu,out)cout + (µu,in − µu,out)
∂f

∂a
= α (A.9)

Equations A.8 and A.9 allow us to calculate the chemical potentials of all molecular species

from numerical derivatives of f with respect to mole fractions and to η.
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Appendix B

CALCULATING PHASE DIAGRAMS FROM
PHENOMENOLOGICAL FREE ENERGIES

The purpose of this appendix is to provide a practical guide to the problem of calculating

the phase diagram of a mixture, beginning with an expression for the free energy as a

function of the mole fractions of the components of the mixture. As an illustration we will

consider the following free energy of a ternary mixture of saturated (s) lipids, unsaturated

(u = 1− s− c) lipids, and cholesterol (c):

f(s, c) = s ln s+ u lnu+ c ln c+ Jus+Kusc (B.1)

Mathematically, the problem of calculating the tie-lines connecting coexisting phases is

straightforward. We define the functions

µs(s, c) =
∂f

∂s
(B.2)

µc(s, c) =
∂f

∂c
(B.3)

γ(s, c) = f(s, c)− s · µs(s, c)− c · µc(s, c), (B.4)

It should be noted that the use of the symbols µ and γ here is merely suggestive; these

functions are not chemical potentials or surface tensions, as can be seen from Equations

(A.9). However, one may show using Equations (A.9) that the equality of µs, µc, and γ

between two states is a necessary condition for their coexistence . There will be coexistence

between phases with compositions (s1, c1) and (s2, c2) if these compositions satisfy the

following equations:

µs(s1, c1) = µs(s2, c2) (B.5)

µc(s1, c1) = µc(s2, c2) (B.6)

γ(s1, c1) = γ(s2, c2) (B.7)



94

Because there are four unknowns (s1, c1, s2, and c2) but only three equations, if there

is phase coexistence at all there will be a one-dimensional continuum of solutions, so one

must impose an additional constraint such as fixing a particular value of c1. Usually the

equations above must be solved numerically, for example by using the multidimensional

Newton iteration [114]. Of course, for any values of s and c there is always a trivial solution

where s1 = s2 = s and c1 = c2 = c. This makes it necessary to make an appropriate initial

guess for the unknowns. We now describe several methods for making this initial guess,

which is the most difficult aspect of the calculation of miscibility phase diagrams.

Reduction to a binary mixture

We begin with a simple case where J = 3 and K = 1 in equation (B.1), which means that

the binary repulsion between u and s is large enough for phase separation to occur in the

binary u-s mixture. Then it is easy to obtain the coexisting phases in the binary system

by plotting f(s, 0.001) versus s, as shown in Figure B.1. The reason for plotting f(s, 0.001)

instead of f(s, 0) is that the entropy term c ln c in equation (B.1) is undefined at c = 0, even

though its limit is finite as c→ 0.

0.2 0.4 0.6 0.8 1.0 s

-0.06

-0.04

-0.02

0.02

0.04

fHs, 0.001L

Figure B.1: Free energy of a binary mixture with J = 3.

From Figure B.1 one can read off a good guess for a tie-line of a mixture which is nearly

binary: s1 ≈ 0.1 and s2 ≈ 0.9, while c1 ≈ c2 ≈ 0.001. By fixing c1 = 0.001 and using

a numerical solver we then find an exact tie-line. This tie-line can in turn be used as a

good initial guess for a tie-line with a slightly different value of c1, for example c1 = 0.002.
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Figure B.2: Ternary phase diagram calculated from equation (B.1) with J = 3 and K = 1.

Continuing in this way one obtains the phase diagram shown in figure B.2. Thus a miscibility

phase diagram for a ternary system can in some cases be determined from an initial guess in

a binary subsystem. The tie-lines for the quaternary mixture shown in Figure 2.3 of Chapter

2 were calculated in an analogous fashion by using the known tie-lines of the ternary mixture

(with z = 0) as initial guesses.

The Spinodal Line

In some cases, phase separation occurs in a ternary system but not in any of its binary

subsystems. Then we may not calculate tie-lines using the method described in the previous

section, and we need other methods to make initial guesses as to the location of the tie-lines.

To illustrate this, we consider the same free energy (B.1) as before, but now with J = 0

and K = 9. In this case, although there is a very strong ternary interaction, there will

be no phase separation in any binary mixtures. One way to see that there will indeed be

phase separation in the ternary system, and to get an idea of the location of the tie-lines,

is to consider the condition of local stability of the mixture. We define σ(s, c) to be the

determinant of the matrix of second derivatives (or Hessian) of f

σ(x, y) ≡ det

 ∂2f
∂s2

∂2f
∂s∂c

∂2f
∂s∂c

∂2f
∂c2

 (B.8)



96

Compositions for which σ(s, c) < 0 are locally unstable with respect to phase separation.

The locally unstable region of composition space is bounded by a line called the “spinodal.”

Although phase separation may occur for average compositions lying outside of the spinodal,

the possibility of phase separation at a given temperature is always signaled by the existence

of a spinodal. This allows us to use σ as a criterion to tell whether or not phase separation

will occur by doing a contour plot of the spinodal, where σ(s, c) vanishes. This is shown in

figure B.3 for the free energy function (B.1) with J = 0 and K = 9.

S

C

U

Figure B.3: Spinodal region calculated from equation (B.8) with J = 0 and K = 9.

In the interior of the dashed spinodal line, the ternary mixture is locally unstable. We

might also guess that the outermost points of the spinodal region are critical points, which

gives an indication of the directions of the tie-lines. However, there is still a good deal of

guesswork involved, so we next describe a method which quickly gives us information about

the tie-lines (which end on the binodal).

The Convex Hull Method

Phase separation occurs whenever the graph of the free energy as a function of composition

fails to be convex. The process of finding tie-lines is equivalent to replacing the concave

regions of the graph with straight lines or planes which are doubly tangent with the graph.

Mathematically speaking, this is equivalent to the problem of finding the so-called “convex
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hull” of the graph of f . The convex hull of a region in space is the smallest convex set

containing that region (a region is convex if the straight line segment connecting any two of

its points lies entirely within it). Intuitively, it is the shape taken on by an idealized rubber

sheet stretched around the region. Finding the convex hull of a set of points is a common

problem in the mathematical field of computational geometry, and efficient algorithms exist

to solve it in any number of dimensions [106]. A straightforward, if brute-force, approach

to calculating phase diagrams is to take a large set of random points on the graph of f and

to use software such as qhull[5] to find the convex hull. The result is a convex polyhedron

with a large number of faces, such as the one shown in figure B.4. The facets of the convex

Figure B.4: Convex hull of a large number of random points on the graph of the free energy
function (B.1) with J = 0 and K = 9.

hull can then be projected onto the Gibbs triangle as shown in figure B.5. The facets

of the convex hull give us enough information to make a phase diagram of the mixture.

Regions of the Gibbs triangle in which a single phase is globally stable are filled with small

triangles, since the convex hull did not include any facets connecting these regions to points

distant from them. On the other hand, the long, thin facets of the convex hull are good
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Figure B.5: Projection of the facets of the convex hull in figure B.4 onto the Gibbs triangle,
showing tie-lines and a region of three-phase coexistence. The spinodal line from figure B.3
is shown dashed.

approximations of tie-lines and can be used as initial guesses in the method described in the

first section of this appendix. The large triangular facet in the middle of the phase diagram

is a region of three-phase coexistence.

The method of convex hulls is quite useful when dealing with an expression for the free

energy whose phase behavior is not obvious. This is particularly true for systems with

internal degrees of freedom such as the ternary mixture described in section 2.1, since in

general it is not possible to find an expression for the spinodal line of these systems.
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Appendix C

DERIVATION OF EFFECTIVE INTERACTION BETWEEN
CHARGED LIPIDS

In this Appendix we calculate the effective electrostatic free energy of a set of charged

lipid head groups lying at the interface between a lipid bilayer and an aqueous solvent, as

depicted in Figure 4.3. This free energy includes both electrostatic energy and the entropy

associated with the salt ions in a solution with Debye screening length κ−1. It will be

assumed that for a given set of positions of charged lipids, the ions will rapidly reach their

equilibrium distribution, given by the Poisson-Boltzmann equation. Furthermore, we will

assume that the electrostatic potential is always small enough to linearize the Poisson-

Boltzmann equation. This could limit the validity of this model to situations where the

lipids have only one elementary charge each (n = 1), since the dimensionless coupling

parameter which must be small in order for the Poisson-Boltzmann equation to be valid is

proportional to n3 [105].

The charge density on the surface of the bilayer is

σ(x) =
∑
i

−ne · δ(x− xi) (C.1)

Throughout this Appendix x will be used as an in-plane vector at the surface z = 0 of the

bilayer, while r will be a three-dimensional position vector. The charge density will generate

a potential, as well as a redistribution of salt ions. The electrostatic free energy is

Fel =
1
2

∫
V (x, z = 0)σ(x)d2x +

1
2

∫
V (r)(eρ+(r)− eρ−(r))d3r

+kBT
∫

[ρ+(r) ln(ρ+(r)) + ρ−(r) ln(ρ−(r))] d3r, (C.2)

where ρ+(r) and ρ−(r) are number densities of positive and negative ions in solution. If

one substitutes the Poisson-Boltzmann charge distributions into the entropy terms, there is

a partial cancellation with the simplified result (see also section 4.3)

Fel =
1
2

∫
V (x, z = 0)σ(x)d2x− 1

2

∫
V (r)ρ(r)d3r, (C.3)
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where ρ(r) is now the total charge (not number) density of ions in solution. Furthermore,

since the potential in the solution obeys the Debye-Hückel equation ∇2V = κ2V , we can

write the second term in terms of the potential only:

Fel =
1
2

∫
V (x, z = 0)σ(x)d2x + εWκ

2 1
2

∫
V (r)2d3r, (C.4)

Because of the linearity of the Debye-Hückel equation, the potential due to all the charged

lipids is the sum of the potentials due to single lipids, V1.

V (r) =
∑
i

V1(r− xi) (C.5)

The single-lipid potential V1 is the Green’s function of the Debye-Hückel equation with ap-

propriate boundary conditions at the interfaces between different dielectrics. It will be given

in the next section, allowing us to calculate the electrostatic free energy, since substituting

equations (C.1) and (C.5) into (C.4) gives (using labels i and j when there are two sums

over particles)

Fel = −ne
∑
i<j

V1(xi − xj) + εWκ
2
∑
i<j

∫
V1(r− xi)V1(r− xj)d3r

+
1
2
εWκ

2
∑
i

∫
V1(r− xi)2d3r (C.6)

The first term comes from the first term of equation (C.4). The second and third terms come

from the second term of equation (C.4). However, the third term, which occurs because of

the cases where i = j in the double sum over particles, is a self-energy which by translational

symmetry does not depend on the positions xi. We therefore neglect it in the following.

From equation (C.6) we can identify the effective interaction between each pair of charged

lipids:

Ueff(x1,x2) = −ne · V1(x1 − x2) + εWκ
2

∫
V1(r− x1)V1(r− x2)d3r (C.7)

In order to calculate this effective interaction, we must now find the single-particle potential

V1.
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Single-particle potential V1

The desired Green’s function has been calculated by Netz [104]. It is conveniently expressed

in cylindrical coordinates (z, ρ), assuming that the point source is located at the origin.

V1(r) =
1

2π

∫ ∞
0

p · J0(pρ)V1(z, p)dp (C.8)

where J0 is a Bessel function and V1(z, p) is a partial Fourier transform of the Green’s

function. Netz gives different expressions for V1(z, p) for the cases where z lies above, or

below, the dielectric membrane:

V1(z, p) = exp(−z
√
κ2 + p2) · (C +D), z > 0

exp(z
√
κ2 + p2) · L, z < −d (C.9)

We will not need the expression for the potential when z lies inside the slab. The definitions

of C, D, and L are:

D =
−ne

2εW
√
κ2 + p2

(C.10)

C = D ·∆ ·

[
1− exp(−2d

√
κ2 + p2)

1−∆2 exp(−2d
√
κ2 + p2)

]
(C.11)

L =
−2ne · εBp · exp

[
d(p+

√
κ2 + p2)

]
(εW

√
κ2 + p2 + εBp)2(exp(2dp)−∆2)

(C.12)

∆ =
εW
√
κ2 + p2 − εBp

εW
√
κ2 + p2 + εBp

(C.13)

Calculation of effective interaction when εB/εW ≈ 0

Using the expressions from equation (C.9) for the partially Fourier-transformed Green’s

function V1(z, p), we can put these into equation (C.8) to obtain the real-space Green’s

function in cylindrical coordinates. In general, the integrals involved will be very difficult

or intractable analytically. Here, we look at a special case where εB/εW ≈ 0. In that case,

∆ ≈ 0

C ≈ D

L ≈ 0
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The potential due to a single charged lipid, in the region z > 0, is then

V1(r) =
1

2π

∫ ∞
0

p · J0(pρ)

[
−ne

εW
√
κ2 + p2

]
exp(−z

√
κ2 + p2)dp

=
−ne
2πεW

· exp(−κr)
r

(C.14)

The first term in the effective interaction energy (C.7) is then

−ne · V1(x1 − x2) =
(−ne)2

2πεW
· exp(−κr)

r
, (C.15)

where r is the distance between the two charged lipids. This is exactly twice the ordinary

screened Coulomb interaction which we would get if the charges were far from the interface.

This is due to the presence of image charges induced by the interface between two dielectrics.

One can calculate the image charge of a point charge e to be [75]

e′ = e · εW − εB
εW + εB

(C.16)

In the limit where εB/εW ≈ 0, the image charge has the same value as the original one.

Thus the factor of two represents the repulsion of a given lipid from each other lipid, as well

as from the image charges of the other lipids.

We must now calculate the second term in the effective interaction energy between

charged lipids, namely

εWκ
2

∫
V1(r− x1)V1(r− x2)d3r = εWκ

2(
ne

2πεW
)2

∫
z>0

exp(−κr1)
r1

· exp(−κr2)
r2

d3r,

where r1 = ‖r− x1‖ and r2 = ‖r− x2‖. In this integral, the positions of the two lipids are

fixed at x1 and x2, while r runs over the half-space z > 0. In the end, it will only depend on

the distance between the two charged lipids, so we are free to choose our coordinate system

such that one charge is at the origin, and the other charge is on the z axis, with a distance

ρ between them. It is then possible to simplify the integral by evaluating it in spherical

coordinates. The integral above becomes, after extending it to all of space and dividing by

two,

1
2
·
∫ ∞

0
dr

exp(−κr)
r

· 2πr ·
∫ 1

−1
d cos θ ·

exp
[
−κ
√
r2 sin2 θ + (r cos θ − ρ)2

]
√
r2 sin2 θ + (r cos θ − ρ)2

= π

∫ ∞
0

dr exp(−κr)
∫ 1

−1
du

exp
[
−κ
√
r2 + ρ2 − 2rρu

]
√
r2 + ρ2 − 2rρu

(C.17)
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This integral can be done analytically. The resulting value of the second term in the effective

interaction is

εWκ
2

∫
V1(r− x1)V1(r− x2)d3r (C.18)

=
(ne)2κ

4πεW
· exp(−κρ)

κρ
· [γ + exp(2κρ) · Γ(0, 2κρ) + ln(2κρ)] , (C.19)

where γ = 0.577 . . . is the Euler-Mascheroni constant and Γ(0, x) is an incomplete gamma

function, defined by

Γ(0, x) =
∫ ∞
x

exp(−t)
t

dt (C.20)

This function decreases exponentially for large x.

Result

The final result is that in the limit where εB/εW ≈ 0, the effective interaction between two

charged lipids separated by a distance r in the plane of the bilayer is

Ueff(r) =
(ne)2

4πεW
· exp(−κr)

r
· [2 + γ + exp(2κr)Γ(0, 2κr) + ln(2κr)] (C.21)

This potential is compared to the ordinary screened Coulomb potential (far from any inter-

faces) in section 4.4 of the text.
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Appendix D

SIMPLIFIED PHENOMENOLOGICAL MODEL OF TERNARY
MIXTURE OF SATURATED AND UNSATURATED LIPIDS AND

CHOLESTEROL

In this Appendix we describe a model of a ternary mixture of saturated lipids, unsat-

urated (low melting temperature) lipids, and cholesterol. The model is similar to the one

described in Section 2.1, but simpler and easier to use in calculations. Instead of a con-

tinuum of states labeled by values of δ as in the previous model, the saturated lipids have

two states, ordered and disordered. The mole fractions of ordered saturated lipids and

of disordered saturated lipids are so and sd, respectively. The physics is the same as has

been discussed previously [117]: the repulsion between saturated and unsaturated lipids

is stronger when the saturated lipids are in their ordered state. Furthermore, there is an

attractive term acting between cholesterol and ordered saturated lipids. The free energy

per molecule, in units of kBT , is

f(sd, so, c) = so ln so + sd ln sd + c ln c+ (1− sd − so − c) ln(1− sd − so − c)

+ Jdsd(1− sd − so − c) + Joso(1− sd − so − c)− Jscsoc (D.1)

Of course, the ordered and disordered saturated lipids are not different species: they can

turn into each other. Thus we must set their chemical potentials equal to each other:

∂f

∂sd
=

∂f

∂so
(D.2)

We can use this equation to write both sd and so in terms of the total mole fraction

s = sd + so. The result is

sd(s, c) =
1

1 + exp(−{(Jo − Jd)(1− s− c)− Jscc})
· s (D.3)

so(s, c) =
exp(−{(Jo − Jd)(1− s− c)− Jscc})

1 + exp(−{(Jo − Jd)(1− s− c)− Jscc})
· s (D.4)
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The interpretation of these equations in terms of Boltzmann factors is clear. We can now

put these expressions back into the original free energy, obtaining

f(s, c) ≡ f(sd(s, c), so(s, c), c) (D.5)

This is like taking the equilibrium value of δ in the model described in section 2.1 and

substituting it back into the free energy to obtain a free energy as a function of compositions

only. However, the current method has the advantage that when the Boltzmann weights

above are put into the mixing entropy in equation (D.1), there will be terms that give the

internal (configurational) entropy of the saturated lipids. A phase diagram derived from

this simplified model is shown in Figure 4.1; compare to Figure 2.2.
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